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The time limit for this exam is 4 hours. Your solutions should be clearly written arguments. Merely
stating an answer without any justification will receive little credit. Conversely, a good argument which
has a few minor errors may receive substantial credit.

Please label all pages that you submit for grading with your identification number in the upper right
hand corner, and the problem number in the upper-left hand corner. Write neatly. If your paper cannot
be read, it cannot be graded! Please write only on one side of each sheet of paper. If your solution to a
problem is more than one page long, please staple the pages together.

The five problems below are arranged in roughly increasing order of difficulty. In particular, problems
4 and 5 are quite difficult. We don’t expect many students to solve all the problems; indeed, solving just
one problem completely is a fine achievement. We do hope, however, that you find the experience of
thinking deeply about mathematics for 4 hours to be a fun and rewarding challenge. We hope that you
find BAMO interesting, and that you continue to think about the problems after the exam is over. Good
luck!

Problems

1 Prove that any integer greater than or equal to 7 can be written as a sum of two relatively
prime integers, both greater than 1. (Two integers are relatively prime if they share no common
positive divisor other than 1. For example, 22 and 15 are relatively prime, and thus 37 = 22+15
represents the number 37 in the desired way.)

2 Let ABC be a triangle with D the midpoint of side AB, E the midpoint of side BC , and F the
midpoint of side AC . Let k1 be the circle passing through points A, D, and F ; let k2 be the
circle passing through points B, E , and D; and let k3 be the circle passing through C, F , and
E . Prove that circles k1, k2, and k3 intersect in a point.

3 Let x1, x2, . . . , xn be positive numbers, with n ≥ 2. Prove that(
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4 Prove that there exists a set S of 31000 points in the plane such that for each point P in S, there
are at least 2000 points in S whose distance to P is exactly 1 inch.

Please turn over for problem #5.



5 Alice plays the following game of solitaire on a 20 × 20 chessboard. She begins by placing
100 pennies, 100 nickels, 100 dimes, and 100 quarters on the board so that each of the 400
squares contains exactly one coin. She then chooses 59 of these coins and removes them from
the board. After that, she removes coins, one at a time, subject to the following rules:

• A penny may be removed only if there are four squares of the board adjacent to its square
(up, down, left, and right) that are vacant (do not contain coins). Squares “off the board”
do not count towards this four: for example, a non-corner square bordering the edge of
the board has three adjacent squares, so a penny in such a square cannot be removed under
this rule, even if all three adjacent squares are vacant.

• A nickel may be removed only if there are at least three vacant squares adjacent to its
square. (And again, “off the board” squares do not count.)

• A dime may be removed only if there are at least two vacant squares adjacent to its square
(“off the board” squares do not count).

• A quarter may be removed only if there is at least one vacant square adjacent to its square
(“off the board” squares do not count).

Alice wins if she eventually succeeds in removing all the coins. Prove that it is impossible
for her to win.
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Solutions

1 We shall present four solutions. The first solution, the most elementary, is similar to most of
the correct solutions that were submitted. The second solution uses knowledge about the Euler
φ-function, which counts the number of integers which are relatively prime to a given number.
The final two solutions use insights about the distribution of prime numbers.

Solution 1: First note that if d divides two integers a and b, then d must also divide their
difference a−b. Therefore, consecutive positive integers are always relatively prime (difference
is 1). Likewise, if a and b are both odd with a difference of 2 or 4, then a and b are relatively
prime.

Now let n be greater than 7.

• If n is odd, then n has the form n = 2k + 1, where k ≥ 3 is an integer. Thus we write the
sum n = k + (k + 1).

• If n is even, then n has the form n = 2k, where k ≥ 4 is an integer.

– If k is even, we write n = (k − 1) + (k + 1).

– If k is odd, we write n = (k − 2) + (k + 2).

Solution 2 (sketch): Recall that (x, y) denotes the greatest common divisor of the natural
numbers x and y. To write n as a + b with (a, b) = 1 and a, b > 1 is the same as to find a
satisfying (a, n − a) = 1 and 1 < a < n − 1. But (a, n − a) = (a, n), so for n > 2, the
number of such a is φ(n) − 2, where φ(n) is the Euler φ-function counting integers a between
1 and n − 1 inclusive with (a, n) = 1. Then the problem reduces to showing that φ(n) > 2
for n ≥ 7, and this can be done fairly easily by looking at the well-known formula for φ(n): If
n = pe1

1 . . . per
r where the pi are distinct primes and ei ≥ 1, then

φ(n) =
r∏

i=1
pei −1

i (pi − 1).

Solution 3: We will prove the stronger statement that any n ≥ 7 can be expressed as p + m
where p and m are relatively prime integers greater than 1, and p is prime. If p is any prime
less than n − 1, then p > 1, n − p > 1 and p + (n − p) = n. Moreover p and n − p will be
relatively prime, unless p divides n − p, or equivalently p divides n. Therefore it suffices to
show that there is at least one prime less than n − 1 that does not divide n.



Suppose not. Then 2 · 3 · 5 · · · 	 divides n, where 	 is the largest prime less than n − 1. In
particular, 2 · 3 · 5 · · · 	 ≤ n. Consider the odd integer k := (3 · 5 · · · 	) − 2. Since n ≥ 7,
k ≥ 3 · 5 − 2 > 1, and hence k has an odd prime factor q. Then q ≤ k ≤ n/2 − 2 < n − 1, so
q appears in the product 3 · 5 · · · 	 = k + 2. Now q divides k + 2 as well as k, so q divides 2,
contradicting the fact that q is an odd prime.

Hence at least one of 2, 3, 5, . . . , 	 does not divide n, and that prime may be used as p.

Remark: Many students wrote an incorrect solution based on proving that there is a prime p < n
that does not divide n. This was proved by an argument similar to the one in the correct solution
above: if there is no such prime, then 2 · 3 · 5 · · · j divides n, where j is the largest prime less
than n. Let q be a prime factor of k := (2 · 3 · 5 · · · j) − 1. Then q < n, so q appears in the
product 2 · 3 · 5 · · · j . Thus q divides k + 1 as well as k, so q divides 1, a contradiction.

This argument does indeed prove that there is a prime p < n not dividing n, but unfortunately
it leaves open the possibility p = n − 1. If p = n − 1, then n − p = 1, so p + (n − p) is not a
partition of n of the desired form.

Solution 4: Another correct solution uses “Bertrand’s postulate” that if m > 3, there exists a
prime p with m < p < 2m − 2. (This was first proved by Chebychev: see p. 373 of Hardy
and Wright, An Introduction to the Theory of Numbers, 5th edition, Clarendon Press, 1979.)
Applying this with m = 
n/2�, the smallest integer greater than or equal to n/2, produces a
prime p with n/2 < p < n − 1. Such p cannot divide n, since p < n < 2p. Hence as in the
previous solution, the partition n = p + (n − p) works.

Remark: It would not be enough to use the slightly weaker statement (often also called Bertrand’s
postulate) that for m > 1 there exists a prime p with m < p < 2m. If n is even, the choice
m = n/2 does not rule out p = n −1. Choosing m = n/2−1 fixes this problem, but introduces
the new problem that p might be n/2, which divides n.

2 We shall present two solutions. The second solution generalizes the problem.

Solution 1: Let k be the circumscribed circle of �ABC . Let O be the center of k, and let O1

be the center of circle k1 (see Fig. 1.)

We claim that k1 passes through O . Indeed, consider the dilation ρ with center A and
coefficient 1/2: it sends any point X in the plane the midpoint of segment AX . Since D and
F are respectively the midpoints of AB and AC , then ρ sends B to D and C to F . Further, ρ

does not move point A. In summary, ρ sends three points on circle k (A, B, C) to three points



on circle k1 (A, D, F). But circles go to circles under dilations. Thus, ρ must have sent the
circle k to the circle k1. In particular, if A′ is the diametrically opposite point to A on k, ρ must
have sent A′ to some point on k1. On the other hand, since O is the center of k and hence the
midpoint of AA′, we see that ρ sends A′ to O . Thus, point O lies on the circle k1.

Using similar reasoning, we conclude that O also lies on circles k2 and k3. Therefore, the
three circles k1, k2 and k3 do indeed intersect in a common point, namely, the circumcenter O
of �ABC .
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Solution 2: We claim that a more general statement is also true: The points D, E , F need not
be the midpoints of the sides of �ABC , but can be any points lying on the respective sides of
the triangle. Then again circles k1, k2 and k3 will intersect in a common point.

Proof: Let k1 and k2 intersect in point X , other than D (see Fig. 2.) In k1, � D AF and � F X D
subtend opposite (complementary) arcs on k1, and hence add up to 180◦:

� D AF + � F X D = 180◦.

Similarly in k2:
� DB E + � DX E = 180◦.

So, what is left for � F X E :

� F X E = 360◦ − � F X D −� DX E = (180◦ − � F X D)+(180◦ − � DX E) = � F AD +� E B D.

The last sum is merely 180◦ − � AC B (the angle sum in �ABC is 180◦.) In summary, � F X E =
180◦ − � AC B, or equivalently,

� F X E + � FC E = 180◦.



This is a necessary and sufficient condition for the points C , F , E and X to lie on the same
circle. In other words, X also lies on k3, and hence k1, k2 and k3 indeed intersect in a common
point, namely X .

The diligent reader will have noticed by now that the above solution implicitly assumes that
the intersection point X of k1 and k2 is inside �F DE . This does not need to be true, even
in the special case when points D, E and F are midpoints of the sides of �ABC . However,
considering any other possible case leads to essentially the same solution.

For example, let point X be “below” side AB, i.e. C and X are on different sides of line
AB, but X is still inside � AC B (see Fig. 3.) Then in k1 and k2 the following angles subtend
same arcs, and are therefore equal:

� F X D = � F AD, and � E X D = � E B D.

Hence � F X E = � F AD + � E B D = 180◦ − � AC B. Again, � F X E + � FC E = 180◦, and
hence points F , C , E and X lie on the same circle k3.
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A similar situation occurs if X and A are on opposite sides of line BC , but X is still inside
� ABC (see Fig. 4.) We have from k1 and k2:

� F X D = 180◦ − � F AD, and � E X D = � E B D,

⇒ � F X E = � F X D − � E X D = 180◦ − � F AD − � E B D = � AC E .

Thus, � F X E = � FC E , which implies that X lies also on circle k3.

The reader may now check that in Figure 5 the shaded areas reflect positions of X for which
the problem was already proved. It is easy to see that X cannot be inside �ADF or �DB E



(afterall, these areas are contained entirely in k1 or k2!) It takes a simple argument to rule
out the inside of �C F E . (Show, for instance, that if X were there, then � F X D + � E X D =
180◦ + � C > 180◦, which is ridiculous.) Finally, notice that k1 cannot not pass through any of
the regions α, β and γ , which eliminates them as possible locations for point X .

This exhausts all possibilities for the intersection point X of k1 and k2, and thus proves that
X always lies on the third k3 too.
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3 We shall present two solutions. The first solution uses “standard” inequality methods, while
the second uses induction plus an “algorithmic” approach.

Solution 1: First we will prove a simple lemma involving only two variables: For all positive
a, b,

(a2 + 1)(b2 + 1) ≥ (ab + 1)2.

To see why this is true, multiply out, and after simplifying, we have

a2 + b2 ≥ 2ab.

This is equivalent to
a2 − 2ab + b2 = (a − b)2 ≥ 0,

which of course is true (in fact, for any real numbers a and b).

Now we shall attack the problem. Multiplying both sides by x1x2 · · · xn produces the
equivalent inequality(
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≥ (x1x2 + 1) (x2x3 + 1) · · · (xnx1 + 1) .



Applying the lemma repeatedly yields
(
x2

1 + 1
) (

x2
2 + 1

)
≥ (x1x2 + 1)2 ,(

x2
2 + 1

) (
x2

3 + 1
)

≥ (x2x3 + 1)2 ,

...(
x2

n + 1
) (

x2
1 + 1

)
≥ (xnx1 + 1)2 .

Multiplying these yields the square of the desired inequality.

Solution 2 (sketch): We shall use induction. Even though the problem begins with n = 2, we
can start by noting that for n = 1, the statement is merely the trivial

x1 + 1/x1 ≥ x1 + 1/x1.

In general, suppose without loss of generality that x1 is the largest among the given n
numbers. The right-hand side products containing x1 are: (x1 + 1/x2)(xn + 1/x1). We claim
that this product will not decrease if we swap the places of x2 from the first multiple and x1

from the second multiple, i.e.

(x1 + 1/x2)(xn + 1/x1) ≤ (x1 + 1/x1)(xn + 1/x2).

This inequality is easy to prove: after a little algebra, it becomes

x1x2 + x1xn ≤ x1x1 + x2xn,

which is equivalent to
(x1 − xn)(x1 − x2) ≥ 0,

and this is true because x1 was the largest number among the given n numbers.

Notice that after performing the “swap,” we may cancel (x1 + 1/x1) from both sides, and
what we are left with is the same problem but for the (n − 1) numbers x2, x3, . . . xn. This
completes the inductive step.

4 Let us define a k-configuration to be a finite set of points on the plane such that for each point
P in the set, there are at least k points of the set 1 inch from P . Then the problem is asking us
to show that there is a 2000-configuration with 31000 points.



Notice that an equilateral triangle is a 2-configuration which has 3 points. Now, let A be a
k-configuration with N points, and let T be an equilateral triangle with unit side length. We
shall show that it is possible to “add” a A and T to create a (k + 2)-configuration with 3N
points:

Define the set S by
S = {a + t |a ∈ A, t ∈ T },

where we treat the points as vectors. In other words, S consists of the vector sums of every
point in A with every point in T . Since A has N points, and T has 3 points, the set S will have
3N points as long as all of these sums are distinct. For the time being, let us assume that the
sums are all distinct.

Now we will show that S is a (k + 2) configuration. Consider any point a + t in S, where
a ∈ A and t ∈ T . Since A is a k-configuration, there are k points a1, . . . , ak ∈ A that are 1 inch
away from a. Likewise, there are two points t1, t2 in T which are each 1 inch away from t . It
is easy to check that the k + 2 points

t + a1, . . . , t + ak; a + t1, a + t2

are each 1 inch away from a + t . Thus S is a (k + 2) configuration.

But how do we insure that that all 3N sums are distinct? The sums fail to be distinct only
if there are pairs a, a′ ∈ A and t, t ′ ∈ T with a + t = a′ + t ′ which in turn is true if and only
if a − a′ = t ′ − t . To ensure that this does not happen, it suffices to rotate one of the two sets
(say, T ) so that the slopes of all of the lines connecting all pairs of points in T do not equal any
of the slopes in A (easy to do since there are finitely many points).

For example, in the following diagram, we attempt to “add” two equilateral triangles (the
second triangle is outlined), but because of equal slopes, the sum contains only 6 points.

+ =



On the other hand, if we rotate the second triangle (in this case, by 30 degrees), the resulting
sum contains 9 points (and you should check that this new set is indeed a 4-configuration).

+ =

Clearly, we can continue this summation process, adding additional copies of equilateral
triangles (making sure to rotate so that no slopes are equal). For each triangle that we add, the
new set will have three times as many points. Thus if we add 1000 triangles, we will get a set
with 31000 points which is a 2 + 2 + · · · + 2 = 2000-configuration.

Remark: This construction can be generalized to show that if s(k) denotes the smallest
number of points possible for a k-configuration, then s(k + m) ≤ s(k)s(m). This may help the
reader to investigate the deeper question: what is s(k) for each k?

5 We shall present 3 solutions, all of which use the same basic idea of monovariants, quantities
which vary monotonically (are either non-increasing or non-decreasing). The first solution
develops the ideas in a leisurely fashion. The second solution is an ultra-compact version of the
first, and the third solution is a terse argument which uses a different monovariant.

Solution 1: Assume that the squares have unit length. Consider, at any time during the game,
the perimeter of the region of empty squares (this region may or may not be connected). For
example, suppose that at some time 64 squares are empty. If the empty squares are packed
together forming an 8 × 8 square, the perimeter will equal 4 · 8 = 32. On the other hand, if
none of the 64 empty squares are adjacent to one another, the perimeter will equal 4 · 64 = 256
(each square has perimeter 4).

At the start of the game, there are k = 59 empty squares. At this point the the perimeter is
at most 4k. Now consider what happens as different coins are removed.

In order for a penny to be removed, it has to be surrounded on all 4 sides by empty squares.
The following diagram illustrates the situation. The shaded squares are empty, the squares



containing “X” are occupied by arbitrary coins, and “P” of course denotes a penny. The thick
lines indicate the perimeter.
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Before the removal, the perimeter included the boundary of the square containing the penny.
After the removal, this boundary is gone. Thus, whenever a penny is removed, the perimeter
decreases by 4.

If a nickel is removed, it is possible that it was originally surrounded on all four sides by
empty squares as above, in which case the perimeter will decrease by 4. However, the nickel
may have been adjacent to only three empty squares as seen below.
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In this case, the perimeter decreases by 2. Thus, no matter what, after a nickel is removed, the
perimeter decreases by at least 2.

By similar reasoning (draw diagrams!) we conclude that if a dime is removed, the perimeter
does not increase (it also could decrease by 2 or 4), and when a quarter is removed, the perimeter
may increase, but by at most 2 (it also could not change or decrease by 2 or 4).

Now we will show that it is impossible for the board to evolve so that no coins are left. Note
that this would cause the perimeter to equal 4 · 20 = 80. Suppose that at the start, p pennies,
n nickels, d dimes, and q quarters were removed (so p + n + d + q = k). Let t = 10. If



the board evolved so that all the remaining coins were removed, then t2 − p pennies would be
removed, decreasing the perimeter by exactly 4(t2 − p). Likewise, t2 − n nickels would be
removed, but this will decrease the perimeter by at least 2(t2 − n). The t2 − d dimes that would
be removed decrease the perimeter by at least zero. And finally, t2 − q quarters are removed
and these could make the perimeter increase by at most 2(t2 − q). Recall that the starting value
for the perimeter is at most 4k. Thus, if all coins were removed, the final value of the perimeter
would be at most

4k − 4(t2 − p) − 2(t2 − n) + 2(t2 − q) = 4k − 4t2 + 4p + 2n − 2q.

But 4p + 2n − 2q is certainly less than or equal to 4(p + n + d + q) = 4k, so the final value
of the perimeter is at most

4k − 4t2 + 4k = 8k − 4t2 = 8 · 59 − 4 · 102 = 72,

Contradicting the fact that the perimeter must equal 80.

Solution 2: Define P to be perimeter of empty region (as defined in the previous solution) and
let q, d, n be respectively the number of quarters, dimes, and nickels on the board at a given
time. Then the quantity

P − 4q − 2d + 2n

is a monovariant: it is non-increasing (no matter how the coins are legally removed). The initial
value of this quantity is at most 72, yet the value of the empty board is 80. Hence the board will
never be empty.

Solution 3: For simplicity, give each coin the value 1, 2, 3, 4 (pennies, nickels, dimes, quarters)
according to the minimum number of adjacent squares that are required for their removal. If
x is a configuration of coins let f (x) denote the sum of the coins plus the number of pairs
of adjacent empty squares on the board. If x ′ is a configuration obtained from x by (legally)
removing some coin, then f (x ′) ≥ f (x) by the rules (e.g., removing a dime decreases the total
coin value by 3 but increases the number of orthogonally adjacent pairs by at least 3). In other
words, f (x) is a monovariant. A simple count shows that f (empty) = 760 and

f (initial) = 764 = 100 · 1 + 100 · 2 + 100 · 3 + 41 · 4,

since the smallest initial f () is obtained by removing 59 pennies (and not creating any adjacent
squares). Since we can’t move upwards from 764 and end up at 760 the desired sequences of
moves doesn’t exist.


