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Problems and Solutions

1 Each vertex of a regular 17-gon is colored red, blue, or green in such a way that no two adjacent vertices have the
same color. Call a triangle “multicolored” if its vertices are colored red, blue, and green, in some order. Prove that
the 17-gon can be cut along nonintersecting diagonals to form at least two multicolored triangles.

(A diagonal of a polygon is a a line segment connecting two nonadjacent vertices. Diagonals are called noninter-
secting if each pair of them either intersect in a vertex or do not intersect at all.)

Solution: (One of many similar solutions.) Denote the colors by 1, 2, 3. Notice that all three colors must
be used. This is true because if only two colors were used, the vertex coloring would be of the type 121212 · · ·
which is impossible, since 17 is odd (this would make two adjacent vertices the same color). Hence there are three
consecutive vertices colored (without loss of generality) 123, respectively. (For otherwise, if 3 consective vertices
had coloration of the form aba, the next three vertices [overlapping two vertices] would have to be colored bab,
etc., forcing the pattern ababab . . . which is not possible with an odd number of vertices.

Thus we have 4 cases depending on the colors of the vertices adjacent to this segment: 21231, 21232, 31231,
31232. It is easy to see that the desired construction can be done in each case; the figure below illustrates this.
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Remark: You may wish to try a more general problem: show that there exists a triangulation of the 17-gon
for which all triangles are multicolored. (A triangulation is a dissection of an entire polygon into triangles, where
each triangle is formed from vertices and diagonals (or sides) of the original polygon, and no triangles overlap
[besides sharing sides or vertices]. There are many ways to triangulate a given n-gon, but all of them use (n − 2)

triangles.)

2 Let J H I Z be a rectangle, and let A and C be points on sides Z I and Z J , respectively. The perpendicular from
A to C H intersects line H I in X , and the perpendicular from C to AH intersects line H J in Y . Prove that X , Y
and Z are collinear (lie on the same line).

Solution: Observe that � X AI = � X HC = � HC J . Hence �X AI ∼ �HC J , and thus X I/H J = AI/C J .
Likewise, Y J/H I = C J/AI . Putting these together yields X I/H J = H I/Y J , and hence

X I

Z I
= Z J

Y J
⇒ �X Z I ∼ �ZY J.

Since � J Z I = 90◦, this immediately implies � Y Z X = 180◦, and X , Y , Z are collinear.
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Remark: It turns out that this problem is equivalent to the Poncelet–Brianchon Theorem: Let A, B and C
be three points on a rectangular hyperbola (a hyperbola with perpendicular asymptotes.) Then the orthocenter of
�ABC also lies on the hyperbola.
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Proof : In the projective plane, let D and E be the two points of intersection of the line at infinity l∞ with the two
asymptotes of the hyperbola �. Note that since � is a conic, D and E are also the points of intersection of � with
l∞. We apply :

Converse of Pascal’s theorem: If the three pairs of opposite sides in a hexagon intersect in collinear points, then
the hexagon is inscribed in a conic.

Note that through any 5 points in general position (no 3 of them collinear), there passes a unique conic. In our
situation, the points A, B, C , D and E lie on a hyperbola, (and hence they are in general position). To show that the
orthocenter H of �ABC also lies on this hyperbola, it suffices to verify that the points X , Y and Z are collinear,
where X = AB ∩ H D, Y = BC ∩ H E , and Z = AE ∩ C D. Thus, the problem is equivalent to

Let J H I Z be a rectangle, and let A and C be points on sides Z I and Z J , respectively. The perpendicular
from A to C H intersects line H I in X, and the perpendicular from C to AH intersects line H J in Y . Then X, Y
and Z are collinear.

But this was our problem #2!

3 Let f (n) be a function satisfying the following three conditions for all positive integers n:

(a) f (n) is a positive integer,

(b) f (n + 1) > f (n),

(c) f ( f (n)) = 3n.

Find f (2001).

We will present two solutions. The first one was presented by the problem proposer, and was the method used
essentially by all the students but one. The second solution, which won the BAMO 2001 Brilliancy Prize, is due
to Andrew Dudzik of Lynbrook HS. Andrew’s solution, (which we only sketch) is not shorter, nor does it use any
ingenious mathematical tricks. But it is superior to the other solutions, because it illuminates the nature of f (n)

in a very simple way.

Solution 1: We will show that f (2001) must equal 3816. We start by proving a lemma which gives us some of
the values of f (n).

Lemma: For n = 0, 1, 2, . . .,

(a) f (3n) = 2 · 3n; and

(b) f (2 · 3n) = 3n+1.

Proof : We use induction. For n = 0, note that f (1) �= 1, otherwise 3 = f ( f (1)) = f (1) = 1, which is impossible.
Since f (k) is a positive integer for all positive integers k, we conclude that f (1) > 1. Since f (n + 1) > f (n), f
is increasing. Thus 1 < f (1) < f ( f (1)) = 3 or f (1) = 2. Hence f (2) = f ( f (1)) = 3.

Suppose that for some positive integer n ≥ 1,

f
(
3n

) = 2 · 3n and f
(
2 · 3n

) = 3n+1.

Then,
f (3n+1) = f

(
f (2 · 3n)

) = 2 · 3n+1,

and
f (2 · 3n+1) = f

(
f (3n+1)

) = 3n+2,



as desired. This completes the induction, and establishes the lemma.

Continuing with our solution, there are 3n − 1 integers m such that 3n < m < 2 · 3n and there are 3n − 1
integers m ′ such that

f
(
3n

) = 2 · 3n < m ′ < 3n+1 = f
(
2 · 3n

)
.

Since f is an increasing function,
f
(
3n + m

) = 2 · 3n + m,

for 0 ≤ m ≤ 3n . Therefore
f
(
2 · 3n + m

) = f
(

f
(
3n + m

)) = 3
(
3n + m

)

for 0 ≤ m ≤ 3n . Hence

f (2001) = f
(
2 · 36 + 543

) = 3
(
36 + 543

) = 3816.

Solution 2: (Sketch) Andrew Dudzik’s insight was to recognize that f (n) deals in a very simple way, with the
base-3 representation of n. Let n = a1an · · · at be the base-3 digits of n. For example, if n = 50 in base 10, we
would write n = 1212 in base 3 and hence a1 = 1, a2 = 2, a3 = 1, a4 = 2. Dudzik proved the following:

1. If a1 = 1, then f (n) = 2a2a3 · · · at .

2. If a1 = 2, then f (n) = 1a2a3 · · · at 0

These two statements can be proven easily with induction; we leave this an an exercise for the reader. Note that
Dudzik’s formulas allow us to immediately compute f (2001). In base-3 notation, 2001 is equal to 2202010. Thus,
by formula #2,

f (2202101) = 12020100 = 1 · 32 + 2 · 34 + 2 · 36 + 37,

and this equals 3816 in base-10 notation.

4 A kingdom consists of 12 cities located on a one-way circular road. A magician comes on the 13th of every month
to cast spells. He starts at the city which was the 5th down the road from the one that he started at during the last
month (for example, if the cities are numbered 1–12 clockwise, and the direction of travel is clockwise, and he
started at city #9 last month, he will start at city #2 this month). At each city that he visits, the magician casts a
spell if the city is not already under the spell, and then moves on to the next city. If he arrives at a city which is
already under the spell, then he removes the spell from this city, and leaves the kingdom until the next month. Last
Thanksgiving the capital city was free of the spell. Prove that it will be free of the spell this Thanksgiving as well.

Solution 1 (sketch): Number the cities from 0 to 11. Encode the current state of affairs by starting at city 11,
writing “1” if the city is not under a spell, and a “0” if it is under a spell. Do the same thing for each city, from city
10 down to city 0. Interpret the resulting list as the binary expansion of an integer X between 0 and m = 212 − 1.

Some thought (using modular arithmetic modulo m, and the way that addition works in base 2) shows that the
rules can be interpreted as saying that if the magician starts at city k then 2k is added to Y , where Y encodes the
state as above. After 12 months the magician starts once at all cities, and this has the net effect of adding

1 + 2 + 22 + 23 + ... + 211 = 212 − 1 = m

to the original X which obviously leaves the state unchanged.



Solution 2: We shall denote the state of the kingdom by a 12-tuple of 0s and 1s, with 0 and 1 meaning “free of
spell” and “under spell,” respectively. For example, suppose that the initial state is (0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0).
This means that city #1 is free of the spell, city #2 is under the spell, city #3 is free, etc. Next, define Sj , for
j = 1, 2, . . . , 12 to be the transformation of the kingdom after the magician makes a visit that starts at city j . For
example,

S1(0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0) = (1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),

since she puts a spell on city #1, then comes to city #2 which is already under the spell, frees it, and stops. Likewise,

S8(0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0) = (1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1),

because she puts cities #8–12 under spell, then continues around the circle to #1, puts it under spell, then finally
stops after freeing city #2. One more example:

S3(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1),

because she puts every city under the spell, starting with #3, until she comes to a city that is already under the
spell, and this happens when she comes to city #3 for the second time.

The key to this problem is the remarkable fact that the Sj transformations commute; i.e.

Si S j = Sj Si for all i, j ∈ {1, 2, 3, . . . , 12}.

Let us assume this fact, to see how it quickly solves the problem. Without loss of generality, suppose the
magician starts a visit at city #1. Then during the course of the year, her subsequent visits will start at the following
cities, in this order:

6, 11, 4, 9, 2, 7, 12, 5, 10, 3, 8.

In other words, during the year she will make 12 visits, and each visit will start at a different city.1 In other words,
the kingdom will be transformed, in order, by S1, S6, S11, . . .. But since these transformations are commutative,
we can rearrange the order that we perform the transformations. So, during the course of the year, the kingdom
will be transformed by S1, S2, S3, . . . , S12, where we may choose the order in any way that we like.

Consider the state of the kingdom last Thanksgiving. Suppose cities a, b, c, . . . are spell-free (where city a is
the capital) and cities A, B, . . . are under the spell. Now we shall perform the transformations, in this order:

• SA, SB, . . .: Each of these are “single-city” transformations that merely free the starting city and then stop.
In other words, after these transformations have been performed, all the cities which were under the spell are
now free, and hence at this point, all cities in the kingdom are free. (It may be that no cities were under the
spell in the first place, so this step may not take place.)

• Sa : Starting with a, all cities get put under the spell (since they were previously all free), until the magician
returns to a, frees it, and stops. Now all cities are under the spell, except for the capital city a.

• The remaining transformations Sb, Sc . . .: Since all cities except a are under the spell, each of these are again
“single-city” transformations which end up freeing cities b, c, . . ..

Thus, after the 12 visits, city a is still free. In fact, we have shown more, namely that the state of each of the
12 cities of the kingdom will repeat every 12 months. For example, if city #5 was free last Thanksgiving, it will
be free this Thanksgiving; if city #7 was under the spell last Thanksgiving, it will also be under the spell this
Thanksgiving, etc.

1The sophisticated reader will observe that this is a consequence of the fact that 5 is relatively prime to 12.



It remains to prove the key fact that the Sj transformations are commutative. Specifically, we will show that

Sj (Si (x1, x2, . . . , x12)) = Si (Sj (x1, x2, . . . , x12))

for any distinct i, j and for any 12-tuple (x1, x2, . . . , x12). We can do this by examining several cases which depend
on the 12-tuple.

1. All the coordinates are zero. In other words, all towns are currently free of the spell. It is easy to check that
performing Si on this will put make all xk = 1 except xi = 0. Then performing Sj will change x j to 0. The
net result is that all values are 1 except for xi = x j = 0. Clearly, we will have the same result if we perform
Sj first, and then Si .

2. Exactly one of the coordinates is 1.

(a) Suppose xi = 1 and all others are zero. Performing Si makes xi = 0 and hence now all values are zero.
Then Sj results in all values equalling 1 except x j = 0. Conversely, performing Sj first will put all cities
from j to i − 1 under the spell (travelling clockwise) until the magician reaches city i which she then
frees of the spell and stops. So now there is an “arc” of 1’s from x j to xi−1 and all other values are 0.
Performing Si on this turns the values of the arc from i to j − 1 into 1’s, until she reaches city j , and
then she frees this city and stops. The net result again is that all values are 1 except x j = 0. The figure
below illustrates this. We assume clockwise travel and denote free/spell by white/black, respectively.
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(b) Suppose x j = 1 and all others are zero. This case is exactly the same as 2(a) above; just interchange i
and j .

(c) Suppose that xk = 1 and all others are zero, with k �= i and k �= j . The figure below illustrates the case
where k lies on the clockwise arc between i and j . The case where k lies between j and i has a similar
picture.
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3. At least two coordinates equal 1.

(a) Suppose xk = x
 = 1, where k lies on the clockwise arc from i to j and 
 lies on the arc from j to i (it is
possible that k or 
 may equal one or both of i and j .) Then the order of Si and Sj will not matter—each
transformation alters non-overlapping arcs: Si only affects the arc from i to k, while Sj affects the arc
from j to 
.

(b) One of the arcs described in 3(a) contains only zeros. Without loss of generality, suppose that the arc
from i to j is all zeros (including i, j) and let k be the first coordinate clockwise from j such that xk = 1.
The picture below handles this case. The cities between k and i are not shaded, but they could be black
or white; their state is not relevant, since they will be unaffected by Si or Sj .
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These cases encompass all possibilities, so we conclude that Si and Sj commute for all 12-tuples and the proof is
complete.



Remark: There is a third solution method, which examines the number of times each city’s state is changed
during the course of the year.

5 For each positive integer n, let an be the number of permutations τ of {1, 2, . . . , n} such that τ(τ (τ (x))) = x for
x = 1, 2, . . . , n. The first few values are

a1 = 1, a2 = 1, a3 = 3, a4 = 9.

Prove that 3334 divides a2001.

(A permutation of {1, 2, . . . , n} is a rearrangement of the numbers {1, 2, . . . , n}, or equivalently, a one-to-one and
onto function from {1, 2, . . . , n} to {1, 2, . . . , n}. For example, one permutation of {1, 2, 3} is the rearrangement
{2, 1, 3}, which is equivalent to the function σ : {1, 2, 3} → {1, 2, 3} defined by σ(1) = 2, σ (2) = 1, σ (3) = 3.)

Solution: Consider the permutations τ of {1, 2, . . . , n} such that τ(τ (τ (x))) = x for x = 1, 2, . . . , n. Then
for each x ∈ {1, 2, . . . , n}, there are only two possibilities. Either x is a a fixed point; i.e., τ(x) = x , or else x is
a member of a 3-cycle (xyz); i.e. τ(x) = y, τ (y) = z, τ (z) = x , where x, y, z are 3 distinct numbers.

We can thus partition these permutations into two cases: Either 1 is a fixed point, or it is not. In the first case,
the remaining elements {2, . . . , n} can permuted in an−1 ways. In the second case, 1 is part of a 3-cycle (1i j),
where i �= j and i, j ∈ {2, . . . , n}. There are (n − 1)(n − 2) such 3-cycles (order counts). Then the remaining
n − 3 elements can be permuted in an−3 ways. Hence we have (for n > 3)

an = an−1 + (n − 1)(n − 2)an−3. (1)

Define bn to be the highest power of 3 which divides an; i.e.

3bn ‖an.

If n �≡ 0 (mod 3), then (n − 1)(n − 2) will be a multiple of 3, so equation (1) yields an = an−1 + 3kan−3, where
k is a positive integer. Hence

bn ≥ min(bn−1, bn−3 + 1), n �≡ 0 (mod 3). (2)

If n ≡ 0 (mod 3), then (n − 1)(n − 2) ≡ −1 (mod 3), but both (n − 2)(n − 3) and (n − 3)(n − 4) are multiples
of 3. Plugging into (1), we have

an − an−1 = (n − 1)(n − 2)an−3 = (3u − 1)an−3,

an−1 − an−2 = (n − 2)(n − 3)an−4 = 3van−4,

an−2 − an−3 = (n − 3)(n − 4)an−5 = 3wan−5,

for positive integers u, v, w. Adding these, we get

an − an−3 = (3u − 1)an−3 + 3van−4 + 3wan−5,

so
an = 3(uan−3 + van−4 + wan−5).



This implies that
bn ≥ 1 + min(bn−3, bn−4, bn−5), n ≡ 0 (mod 3), n > 5. (3)

We know that b1 = 0, b2 = 0, b3 = 1. Employing (2), we get b4 ≥ 1, b5 ≥ 1. Then (3) yields b6 ≥ 1.
Applying (2) again yields b7 ≥ 1, b8 ≥ 1. But now when (3) is applied, we have b9 ≥ 2. It is evident that
continuing this process, (2) and (3) will increment bn by at least one as n increases by 6. In other words,

b6k+3 ≥ k + 1.

Since 2001 = 6 · 333 + 3, we are done.

Remark: The above inequalities are not the best. Direct computation using the recurrence (1) shows that a2001

is a 3,830-digit number and that 3445‖a2001.


