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The time limit for this exam is 4 hours. Your solutions should be clearly written arguments. Merely stating
an answer without any justification will receive little credit. Conversely, a good argument which has a few minor
errors may receive substantial credit.

Please label all pages that you submit for grading with your identification number in the upper right hand
corner, and the problem number in the upper-left hand corner. Write neatly. If your paper cannot be read, it cannot
be graded! Please write only on one side of each sheet of paper. If your solution to a problem is more than one
page long, please staple the pages together.

The five problems below are arranged in roughly increasing order of difficulty. In particular, problems 4 and
5 are quite difficult. Few, if any, students will solve all the problems; indeed, solving one problem completely is a
fine achievement. We hope that you enjoy the experience of thinking deeply about mathematics for a few hours,
that you find the exam problems interesting, and that you continue to think about them after the exam is over.
Good luck!

Problems

1 Let ABC be a right triangle with right angle at B. Let AC DE be a square drawn exterior to triangle
ABC . If M is the center of this square, find the measure of � M BC .

2 In the illustration, a regular hexagon and a regular octagon have
been tiled with rhombuses. In each case, the sides of the
rhombuses are the same length as the sides of the regular polygon.

(a) Tile a regular decagon (10-gon) into rhombuses in this manner.

(b) Tile a regular dodecagon (12-gon) into rhombuses in this manner.

(c) How many rhombuses are in a tiling by rhombuses of a 2002-gon?
Justify your answer.

Make your drawings on the sheet of decagons and dodecagons provided. Clearly indicate which drawings
you would like to have graded.

3 A game is played with two players and an initial stack of n pennies (n ≥ 3). The players take turns
choosing one of the stacks of pennies on the table and splitting it into two stacks. The winner is the
player who makes a move that causes all stacks to be of height 1 or 2. For which starting values of n
does the player who goes first win, assuming best play by both players?

Please turn over for problems #4 and #5.



4 For n ≥ 1, let an be the largest odd divisor of n, and let bn = a1 +a2 +· · ·+an . Prove that bn ≥ n2 + 2

3
,

and determine for which n equality holds. For example,

a1 = 1, a2 = 1, a3 = 3, a4 = 1, a5 = 5, a6 = 3,

thus

b6 = 1 + 1 + 3 + 1 + 5 + 3 = 14 ≥ 62 + 2

3
= 12

2

3
.

5 Professor Moriarty has designed a “prime-testing trail.” The trail has 2002 stations, labeled 1, . . . , 2002.
Each station is colored either red or green, and contains a table which indicates, for each of the digits
0, . . . , 9, another station number. A student is given a positive integer n, and then walks along the trail,
starting at station 1. The student reads the first (leftmost) digit of n, and looks this digit up in station
1’s table to get a new station location. The student then walks to this new station, reads the second digit
of n and looks it up in this station’s table to get yet another station location, and so on, until the last
(rightmost) digit of n has been read and looked up, sending the student to his or her final station. Here
is an example that shows possible values for some of the tables. Suppose that n = 19:

Station 0 1 2 3 4 5 6 7 8 9
1 (red) 15 29 314 16 2002 97 428 1613 91 24

...

29 (red) 98 331 1918 173 15 41 17 631 1211 1429
...

1429 (green) 7 18 31 43 216 1709 421 53 224 1100

Using these tables, station 1, digit 1 leads to station 29; station 29, digit 9 leads to station 1429; and
station 1429 is green.

Professor Moriarty claims that for any positive integer n, the final station (in the example, 1429) will
be green if and only if n is prime. Is this possible?

You may keep this exam. Please remember your ID number! Our grading records
will use it instead of your name.

You are cordially invited to attend the BAMO 2002 Awards Ceremony, which will
be held at San Jose State University from 11–2 on Sunday, March 10. This event
will include lunch (free of charge), a mathematical talk by Professor Joseph Gallian
of the University of Minnesota, Duluth, and the awarding of dozens of prizes, worth
thousands of dollars. Solutions to the problems above will also be available at this
event. Please check with your proctor for a more detailed schedule, plus directions.

You may freely disseminate this exam, but please do attribute its source (Bay Area Mathematical Olympiad, 2002, created

by the BAMO organizing committee, bamo@msri.org). For more information about the awards ceremony, contact Tatiana

Shubin (408-924-5146, shubin@mathcs.sjsu.edu). For other questions about BAMO, please contact Paul Zeitz (415-422-

6590, zeitz@usfca.edu), Zvezdelina Stankova-Frenkel (510-430-2144, stankova@mills.edu), David Zetland (510-642-0448,

dz@msri.org), or Michael Singer (510-643-6467, singer@msri.org).
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Problems and Solutions

1 Let ABC be a right triangle with right angle at B. Let AC DE be a square drawn exterior to triangle
ABC . If M is the center of this square, find the measure of � M BC .

Solution 1:

M

B A

E

D

C
k

Note that triangle MC A is a right isosceles triangle with � AC M = 90◦ and � M AC = 45◦. Since
� ABC = 90◦, there is a circle k with diameter AC which also passes through points B and C . As
inscribed angles, � M AC = � ABC , thus the measure of � M BC = 45◦.

Solution 2: Place 3 copies of triangle ABC on the square as shown below.

M

B A

C

Clearly the new diagram is a large square (which can be proven easily by looking at the angles of the
copies of the triangle). The diagonals of this large square meet at M . By symmetry, � M BC = 45◦.

Solution 3: Place triangle ABC on coordinate axes so that A = (0, 2c), B = (0, 0), C = (2a, 0). Let
N be the midpoint of hypotenuse AC and draw line � through N parallel to BC which meets AB at F .
Drop a perpendicular from M to BC which meets � at G. It is evident that triangles AF N and N G M
are congruent.

Thus N G = AF = c and MG = F N = a. Consequently, the coordinates of M are
(a, c) + (c, a) = (a + c, a + c), so the line from M to the origin (at B) has a slope of 1.
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2 In the illustration, a regular hexagon and a regular octagon have
been tiled with rhombuses. In each case, the sides of the
rhombuses are the same length as the sides of the regular polygon.

(a) Tile a regular decagon (10-gon) into rhombuses in this manner.

(b) Tile a regular dodecagon (12-gon) into rhombuses in this manner.

(c) How many rhombuses are in a tiling by rhombuses of a 2002-gon?
Justify your answer.

Solution: For parts (a) and (b), see the tilings below of a decagon and a dodecagon with rhombuses.

(c) Solution 1: We shall describe an algorithm for tiling any regular 2n-gon. First construct a rhombus
A using two sides of a regular 2n-gon. On the two interior sides construct two rhombuses B using a
side adjacent and clockwise to the exterior sides of A. On the three interior sides of the B rhombuses
construct three rhombuses C using the next side of the 2n-gon going clockwise. After the (n − 2)nd step
an outer layer of n − 2 rhombuses is in place. To see that the (n − 1)st step completes the 2n-gon note
that the (n + 1)st side after the first side of A is parallel and equal in length to the first side of A and has
the same length as the nth side of the 2n-gon. Therefore it is a rhombus. In the same way, the remaining
n − 1 sides of the 2n-gon form rhombuses with segments parallel to the nth side. The total number of
rhombuses is the sum of the first n − 1 integers. Then it is the case that a regular 2002-gon can be tiled
with 1 + 2 + 3 + · · · + 999 + 1000 = 1000(1001)/2 = 500(1001) = 500,500 rhombuses.

Solution 2: We will prove the slightly more general fact that any equilateral 2n-gon with opposite sides
parallel (we will call such polygons “EP-gons”) can be tiled with 1 + 2 + · · · + n − 1 rhombuses. We
proceed by induction on n. Certainly the result is true for n = 2, since a 4-sided EP-gon is simply a
single rhombus.

For the inductive step, suppose we have (2n + 2)-sided EP-gon. We will use the leftmost figure
above for reference; thus in this case n = 4. Select one side of this polygon (we will use the “bottom”
side in the picture, one of the sides of rhombus A). Then draw n − 1 lines parallel to this side with
lengths equal to this side, each line starting at a vertex of the polygon. Then draw n lines parallel to
the sides of the polygon; when we are done we will have drawn a “shell” of n rhombuses on the left
of the polygon (rhombus A and the leftmost rhombuses B, C , and D). We claim that the remainder of
the (2n + 2)-gon (the non-tiled region) is a 2n-sided EP-gon. To see this, note that the untiled region
consists of n sides of the right half of the original (2n + 2)-gon, plus n new sides, each drawn parallel



(and equal in length) to a side of the left half of the original (2n + 2)-gon. It is as if we rigidly slided
the left half of the original (2n + 2)-gon to the right, so that the top and bottom sides of the original
polygon disappeared. Thus in this new region, opposite sides are parallel. By the inductive hypothesis,
this region can be tiled with 1 + 2 + · · · + (n − 1) rhombuses. Thus the original (2n + 2)-gon can be
tiled by 1 + 2 + 3 + · · · + (n − 1) + n rhombuses.

3 A game is played with two players and an initial stack of n pennies (n ≥ 3). The players take turns
choosing one of the stacks of pennies on the table and splitting it into two stacks. The winner is the
player who makes a move that causes all stacks to be of height 1 or 2. For which starting values of n
does the player who goes first win, assuming best play by both players?

Solution 1: Player 1 wins if and only if n = 3 or n is even; player 2 wins for all odd n > 3. We can
easily check this for the first few cases, say up to n = 6, and then we can proceed by induction.

• If n > 6 is even, player 1 creates a pile of size 1 and a pile of size n − 1. Since n − 1 is odd,
player 1 will win by the inductive hypothesis (since player 1 is now going second and the “starting
position” has an odd number of pennies).

• If n ≥ 7 is odd, player 1 will create one odd and one even pile. Player 2 can then divide the even
pile into two odd piles. Continuing in this way, player 2 can always answer player 1’s move and
present player 1 with only odd piles. When the piles reach size 1, they are irrelevant. The critical
value is size 3: the only way that player 2 can lose is if player 2 presents player 1 with a single
3-pile (and many 1-piles). But for this to happen, player 1 would have to have produced either a
single 2-pile and one 3-pile, or a single 4-pile. In either case, player 2 wins on the next move by
reducing, in the first case, the 3-pile to a 1- and 2-pile, and in the second case, breaking the 4-pile
into two 2-piles. In sum, player 2’s winning strategy is to always produce only odd piles unless
this will produce all 1’s and a single 3; in which case the “terminal” strategy above is employed.

Solution 2 (Sketch): At each stage of the game, let S be the sum of one less than each pile height. For
example, if the piles are 8, 6, 2, 2, 1, then S = 7 + 5 + 1 + 1 + 0. Observe that S is also equal to the
total number of pennies minus the number of piles, and thus, S always decreases by 1 each turn. We
shall analyze the parity of S.

The only way a player will win is if on their turn, one pile has 3 or 4 pennies, with the other piles
(if there are any) of height 2 or 1. We call such a position “penultimate.” For example, 4, 2, 2, 2, 1 is
penultimate (and the winning move will split the 4 into two piles).

If a position is not penultimate, but can be turned into a penultimate position in one move, we
call it “antepenultimate.” For example, 4, 3, 2, 2, 2, 1 is antepenultimate (if the 4 is split). Notice that
an antepenultimate position doesn’t always have to become a penultimate position in one move. For
example, with the position above, instead of splitting the 4, we could split one of the 2-piles.

The antepenultimate positions fall into 2 cases:

• A 5 or 6, and the rest (if any) are 2s and 1s.

• Two piles that are 3 or 4, and the rest (if any) are 2s and 1s.

We make two observations:



• The number of 1’s are irrelevant (since they cannot be changed, and also they do not alter the value
of S).

• Without loss of generality, the number of 2s in a pile (if there are any) is either 1 or 2. If a position
had more than two 2’s, they can be removed and it would not change the parity of S, nor would it
affect who wins the game (since the only thing that can be done with a 2-pile is either to leave it
alone or split it into two 1-piles)

Thus there are only a few cases to check, and in all of them, we discover that

If a position is antepenultimate and S is odd, then the player who has this position will win. If a position
is antepenultimate and S is even, then the player who has this position will lose.

For example, 5, 2, 1 is antepenultimate and S = 5. The player splits the 2, and then her opponent
has no choice but to split the 5, handing the penultimate position to the first player, who wins.

Now we can use this analysis to look at what happens from the very start of the game.

• If n = 3 or n = 4, the first player already has a penultimate position and wins.

• If n = 5, then the starting position is antepenultimate and S is even. Clearly the second player
wins.

• If n = 6, then the starting position is antepenultimate and S is odd. Clearly the first player wins.

• If n > 7, then the starting position is not antepenultimate. If S is odd to start, it will always be odd
when it is player 1’s turn (since S drops by 1 each time). So at some point, player 1 will either get
the penultimate position and will win, or will get the antepenultimate position with odd S, and will
win. By similar reasoning, if n is odd, S starts out even, and player 1 will lose.

4 For n ≥ 1, let an be the largest odd divisor of n, and let bn = a1 +a2 +· · ·+an . Prove that bn ≥ n2 + 2

3
,

and determine for which n equality holds. For example,

a1 = 1, a2 = 1, a3 = 3, a4 = 1, a5 = 5, a6 = 3,

thus

b6 = 1 + 1 + 3 + 1 + 5 + 3 = 14 ≥ 62 + 2

3
= 12

2

3
.

Solution: Inspecting a few values leads one to the correct guess that equality holds if and only if n
is a power of 2. The idea is to use induction by “doubling” to prove the result. When n = 1, we have
1 = 1 as desired. Now suppose n ≥ 2. If n = 2k with k ≥ 1, then

bn = (a1 + a3 + · · · + a2k−1) + (a2 + a4 + · · · + a2k)

= 1 + 3 + · · · + (2k − 1) + (a1 + a2 + · · · + ak)

= k2 + bk

≥ k2 + (k2 + 2)/3 (by the inductive hypothesis)

= (n2 + 2)/3,



with equality if and only if k is a power of 2, i.e., if and only if n is a power of 2. If instead n = 2k + 1
with k ≥ 1, then

bn = (a1 + a3 + · · · + a2k+1) + (a2 + a4 + · · · + a2k)

= 1 + 3 + · · · + (2k + 1) + (a1 + a2 + · · · + ak)

= (k + 1)2 + bk

≥ (k + 1)2 + (k2 + 2)/3 (by the inductive hypothesis)

= (2k + 1)2 + 2

3
+ 2k + 2

3
> (n2 + 2)/3

so strict inequality holds, as desired.

5 Professor Moriarty has designed a “prime-testing trail.” The trail has 2002 stations, labeled 1, . . . , 2002.
Each station is colored either red or green, and contains a table which indicates, for each of the digits
0, . . . , 9, another station number. A student is given a positive integer n, and then walks along the trail,
starting at station 1. The student reads the first (leftmost) digit of n, and looks this digit up in station
1’s table to get a new station location. The student then walks to this new station, reads the second digit
of n and looks it up in this station’s table to get yet another station location, and so on, until the last
(rightmost) digit of n has been read and looked up, sending the student to his or her final station. Here
is an example that shows possible values for some of the tables. Suppose that n = 19:

Station 0 1 2 3 4 5 6 7 8 9
1 (red) 15 29 314 16 2002 97 428 1613 91 24

...

29 (red) 98 331 1918 173 15 41 17 631 1211 1429
...

1429 (green) 7 18 31 43 216 1709 421 53 224 1100

Using these tables, station 1, digit 1 leads to station 29; station 29, digit 9 leads to station 1429; and
station 1429 is green.

Professor Moriarty claims that for any positive integer n, the final station (in the example, 1429) will
be green if and only if n is prime. Is this possible?

Solution: No, this is impossible. Suppose on the contrary that such a trail has been designed. Since
there are infinitely many primes, we can choose a prime p with more than 2002 decimal digits . When
we test p on the trail, we will visit some station more than once. Write p as 10N A + 10m B + C so
that the station after the digits of A is the same as after the digits of B. Then we may reach the same
station by running through the digits of A, then running through the digits of B any number of times,
then running through the digits of C .

That is, for all k ≥ 0, the numbers

C + 10m B
(
1 + 10N−m + 102(N−m) + · · · + 10k(N−m)

)
+ 10(k+1)(N−m)+m A

= C − 10m B

10N−m − 1
+ 10(k+1)(N−m)

(
10m A + 10m B

10N−m − 1

)



all lead to the same terminal station, and so must all be prime. For simplicity, write this expression as
pk = r + tks, and choose k large enough so that pk does not divide the denominators of r, s, t . Then
tk ≡ tk+pk−1 (mod pk) by Fermat’s little theorem, so pk+pk−1 is divisible by pk and hence is not
prime, contradiction.

Note. A device conforming to the description in the problem is known in computer science as a
finite-state automaton.

No one got full credit for this problem. The best partial solution was due to Phillip Sung, of Saratoga
HS, who argued that if there existed a “repunit” prime with more than 2002 digits (a repunit prime is
prime consisting of repeated 1s; for example, 11), then we would have a contradiction. Unfortunately,
the longest repunit prime known today has 1051 digits. It has been conjectured that there are repunit
primes with over 30,000 digits, but this has not been proven. We leave as exercises for the reader to
prove that all repunit primes have a prime number of digits, and that if there was a repunit prime with
more than 2002 digits, that Phillip would have had a complete solution!


