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Problems and Solutions

1 A tiling of the plane with polygons consists of placing the polygons in the plane so that interiors of
polygons do not overlap, each vertex of one polygon coincides with a vertex of another polygon, and no
point of the plane is left uncovered. A unit polygon is a polygon with all sides of length one.

It is quite easy to tile the plane with infinitely many unit squares. Likewise, it is easy to tile the plane
with infinitely many unit equilateral triangles.

(a) Prove that there is a tiling of the plane with infinitely many unit squares and infinitely many unit
equilateral triangles in the same tiling.

(b) Prove that it is impossible to find a tiling of the plane with infinitely many unit squares and finitely
many (and at least one) unit equilateral triangles in the same tiling.

Solution:

(a) This can be done easily with parallel rows of squares and triangles, as shown.

Of course, other tilings are possible.

(b) Many people received only partial credit for part (b), because their arguments were not rigorous.
In order to show that a tiling is not possible, you need a completely general argument, that handles
all cases. Since there are infinitely many cases, this can be problematical. The way out is a very
neat idea known as the Extreme Principle, which essentially says, “focus on the largest or smallest
entity.” The advantage of this approach is that we now are reduced to studying just one polygon in
the infinite plane.

Method 1: Suppose, to the contrary, that there were such a tiling. Since there are only finitely
many triangles, there is a vertex that is “northenmost.” If there are ties, pick the vertex that lies
furthest to the “east.” At most one other triangle (located to the west) can share this vertex. This is
a contradiction, since the only way that triangles and squares can share a vertex in a tiling is with
3 triangles and two squares (in order to add up to 360 degrees).

Method 2:

Suppose, to the contrary, that there were such a tiling. Since there are only finitely many triangles,
they are contained in a bounded region . Let N be a square that lies to the “north” of (i.e., its south
side is further north than any point in ). Likewise, let E, W, S be squares that lie, respectively, east,
west, and south of .



Observe that the east and west neighbors of N must be squares, since there are no triangles that
far north. Thus, there is an infinite east-west chain of connected squares containing N . Likewise,
there is an infinite east-west chain of squares containing S, and there are two infinite north-south
chains, one containing W , and one containing E .

These four chains meet, forming a rectangular boundary of connected squares that completely
encloses . Now we have a contradiction: This rectangular region has rational (in fact, integer) area,
yet it is tiled with a non-zero number of equilateral triangles, plus, perhaps, some squares. But the
area of each triangle is

√
3/4, and hence the area of the entire collection of triangles and squares

inside this rectangular region is irrational.

Method 3: Suppose that there were such a tiling. By similar reasoning to method 2, we deduce
that the tiling is “eventually” all squares; thus it can be formed by starting with an all-squares tiling,
and then removing a finite number of squares, and filling in the “holes” with a finite number of
triangles. The “holes” only have 90-degree angles; they can never be filled with triangles, since 90
is not a multiple of 60.

2 A given line passes through the center O of a circle. The line intersects the circle at points A and B. Point
P lies in the exterior of the circle and does not lie on the line AB. Using only an unmarked straightedge,
construct a line through P , perpendicular to the line AB. Give complete instructions for the construction
and prove that it works.

Solution: The following construction works:

1. Draw a line from P to A, intersecting the circle at C .

2. Draw a line from P to B, intersecting the circle at D.

3. Draw lines AD and BC , and let E be their point of intersection.

4. Draw a line from P through E ; this will be the desired perpendicular line.

This works because AD ⊥ P B and BC ⊥ P A; hence AD and BC are altitudes of triangle AP B.
It is well known that the three altitudes of a triangle intersect in a point, so E is the intersection of all
three altitudes. It follows that the line through P E is an altitude.

3 NASA has proposed populating Mars with 2,004 settlements. The only way to get from one settlement
to another will be by a connecting tunnel. A bored bureaucrat draws on a map of Mars, randomly placing



N tunnels connecting the settlements in such a way that no two settlements have more than one tunnel
connecting them. What is the smallest value of N that guarantees that, no matter how the tunnels are
drawn, it will be possible to travel between any two settlements?

Solution: The problem is equivalent, in general, to finding the least number of edges required so that
a graph on n vertices will be connected, i.e., one can reach any vertex from any other vertex by following
the edges of the graph. (We are letting settlements be vertices and tunnels be edges, of course).1 This
value is

(n−1
2

) + 1.

Here
(m

2

)
counts the number of all possible pairs in a group of m people, or equivalently, the number

of edges in a graph with m vertices where every two vertices are connected with an edge. This latter
graph is called a complete graph on m vertices.

To see that the minimum number of edges must be
(n−1

2

) + 1, we first observe that it cannot be less
than this, since n − 1 vertices can be connected to one another with

(n−1
2

)
edges, leaving the nth vertex

isolated.

Next we will show that
(n−1

2

) + 1 edges will guarantee that the graph is connected.

Method 1: Suppose to the contrary, that the graph is not connected. Then it consists of k connected
components, each containing v1, v2, . . . , vk vertices. Each component has at most

(vi
2

)
edges. We claim

that (
v1

2

)
+

(
v2

2

)
+ · · · +

(
vk

2

)
≤

(
n − 1

2

)
,

which establishes the contradiction.

The above inequality an easy consequence of the two-term inequality(
a

2

)
+

(
b

2

)
≤

(
a + b − 1

2

)
,

which can be established by considering a complete graph on a vertices (with
(a

2

)
edges) and a complete

graph on b vertices (with
(b

2

)
edges, and then “gluing” them together on one vertex. This produces a new

graph with a + b − 1 vertices which must have at most
(a+b−1

2

)
edges.

Method 2: Since there are at most
(n

2

)
tunnels possible, there will be at most

(
n

2

)
−

((
n − 1

2

)
+ 1

)
= n − 2

tunnels that are not drawn. Call these “antitunnels.” Suppose to the contrary, that the graph is not
connected. Then two settlements, A and B will not be connected. Thus, A and B are joined by an
antitunnel. Furthermore, for each settlement X that is neither A nor B, there can be no path drawn from
A to X and then from X to B. In other words, at least one of the connections AX or X B must be an
antitunnel. However, this would require n − 2 antitunnels, in addition to the antitunnel joining A and B.
Thus n − 1 antitunnels are needed, but at most n − 2 are available; a contradiction.

1For introductory information about graph theory, there are many good books. See, for example, Pearls of Graph Theory
by Hartsfield and Ringel.



4 Suppose one is given n real numbers, not all zero, but such that their sum is zero. Prove that one can
label these numbers a1, a2, . . . , an in such a manner that

a1a2 + a2a3 + · · · + an−1an + ana1 < 0.

Solution: Let the given numbers (in an arbitrary order) be b1, b2, . . . , bn . For every possible
permutation π of {1, 2, . . . , n}, consider the sum

bπ(1)bπ(2) + bπ(2)bπ(3) + · · · + bπ(n−1)bπ(n) + bπ(n)bπ(1).

We wish to show that some such sum is negative, so assume otherwise. For every two distinct elements
i, j ∈ {1, . . . , n}, the term bi b j appears N times among these sums, where N does not depend on i, j ,
by symmetry. (In fact, one can show that N = n(n − 2)!.) Each such sum is assumed to be nonnegative;
adding these inequalities for all permutations π , and dividing by N , we have∑

i �= j

bi b j ≥ 0.

However, we also know that
∑

i b2
i > 0 (strictly, since not all bi are zero). Thus

(b1 + · · · + bn)
2 =

∑
i

b2
i +

∑
i �= j

bi b j > 0.

But since b1 + · · · + bn = 0, we have a contradiction. So our assumption was false, and the needed
negative sum does exist.

5 Find (with proof) all monic polynomials f (x) with integer coefficients that satisfy the following two
conditions.

1. f (0) = 2004.

2. If x is irrational, then f (x) is also irrational.

(Notes: A polynomial is monic if its highest degree term has coefficient 1. Thus, f (x) = x4−5x3−4x+7
is an example of a monic polynomial with integer coefficients.

A number x is rational if it can be written as a fraction of two integers. A number x is irrational if
it is a real number which cannot be written as a fraction of two integers. For example, 2/5 and −9 are
rational, while

√
2 and π are well known to be irrational.)

Solution: The polynomial x + 2004 certainly meets the two conditions. In fact, this is the only
one. We will prove this using three ingredients: the infinitude of primes, the Rational Roots Theorem
for polynomials, and the approximation principle that xn dominates any polynomial of lower degree, for
large enough x .

Note that the only monic constant polynomial is f (x) = 1, which fails Condition 1; and that the only
monic degree 1 polynomial satisfying Condition 1 is f (x) = x + 2004. Thus, we need to eliminate all
polynomials of degree 2 or more. To this end, it is sufficient to show that, given any monic polynomial



f (x) with integer coefficients of degree 2 or more, there exists an integer a such that f (x) + a = 0 has
an irrational solution x (for then f (x) = −a is rational for an irrational number x).

Let f (x) = xn + cn−1xn−1 + · · · + c1x + c0 be a polynomial with integer coefficients, with n ≥ 2.
It may be the case that f (x) has no real roots, for example, if n is even and the graph of y = f (x)

lies above the x-axis. But certainly, if a is a sufficiently large negative integer, we can guarantee that
f (x) + a = 0 will have at least one real solution. In fact, by further making a a larger negative number,
we can ensure that, say, the largest of the solutions of f (x) + a = 0 has absolute value bigger than 1:
|x | > 1.

Moreover, regardless of how large a negative number a needs to be, we can choose a so that
c0 + a = −p where p is prime. This is because there are infinitely many prime numbers. Now we
can apply the Rational Roots Theorem, according to which all rational solutions r

s of the monic integer
coefficient polynomial f (x) + a must satisfy: s divides the leading coefficient of f (x) and r divides the
last (free term) of f (x); in other words, s divides 1 and r divides p. Since p is prime, this gives only four
possible rational solutions: x = ±1, ±p. Since we have ensured that |x | > 1, we are left with x = ±p.

Let g(x) = f (x) + a. From the well known inequalities of absolute values |y + z| ≥ |y| − |z| and
|y + z| ≤ |y| + |z|, we obtain:

|g(x)| = |xn + cn−1xn−1 + ... + c1x − p| ≥ |xn| − |cn−1xn−1 + ... + c1x − p|

and as long as |x | > 1 and n ≥ 2:

|cn−1xn−1 + · · · + c1x − p| ≤ |cn−1||x |n−1 + · · · + |c1||x | + p

≤ (|cn−1| + · · · + |c1|)|x |n−1 + pn−1.

If we let S = |cn−1| + · · · + |c1|, we can put everything together:

|g(±p)| ≥ pn − (S + 1)pn−1 = pn−1(p − (S + 1)
)
.

Since S is fixed, we can choose the prime p large enough so that p > S + 1, and hence the quantity
p − (S + 1) is positive. Therefore, g(±p) �= 0.

Thus g(x) has a real zero x , which cannot be rational since the only possibilities for rational zeros
±p fail to be zeros by the above. We conclude that x is an irrational root of g(x), whereas f (x) = −a
is an integer, hence rational. This contradicts Condition 2, and eliminates all polinomials of degree 2 or
more.

Finally, we are left with only one possible solution: f (x) = x + 2004.


