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February 28, 2006

The time limit for this exam is 4 hours. Your solutions should be clearly written arguments. Merely stating
an answer without any justification will receive little credit. Conversely, a good argument which has a few minor
errors may receive substantial credit.

Please label all pages that you submit for grading with your identification number in the upper-right hand
corner, and the problem number in the upper-left hand corner. Write neatly. If your paper cannot be read, it
cannot be graded! Please write only on one side of each sheet of paper. If your solution to a problem is more than
one page long, please staple the pages together.

The five problems below are arranged in roughly increasing order of difficulty. In particular, problems 4 and
5 are quite difficult. Few, if any, students will solve all the problems; indeed, solving one problem completely is a
fine achievement. We hope that you enjoy the experience of thinking deeply about mathematics for a few hours,
that you find the exam problems interesting, and that you continue to think about them after the exam is over.
Good luck!

Problems

1 All the chairs in a classroom are arranged in a squaren×n array (in other words,n columns andn rows),
and every chair is occupied by a student. The teacher decides to rearrange the students according to the
following two rules:

(a) Every student must move to a new chair.

(b) A student can only move to an adjacent chair in the same row or to an adjacent chair in the same
column. In other words, each student can move only one chair horizontally or vertically.

(Note that the rules above allow two students in adjacent chairs to exchange places.)

Show that this procedure can be done ifn is even, and cannot be done ifn is odd.

Solution: If n is even, there are many ways to do this. One is simply to exchange adjacent students in
each row: the student in an odd-numbered chairk exchanges places with the student in chairk+1. In
other words, exchange students in chairs 1 and 2, those in chairs 3 and 4, and so on. Since there are
an even number of students in each row, every student in every row will move and the teacher’s two
conditions can be satisfied.

If n is odd, imagine that the chairs are colored alternately black and white as on a chessboard with a
black chair in one corner (and hence all four corner chairs are black). It is easy to see that(n2 +1)/2 of
the chairs are colored black and(n2−1)/2 are white, so there is one more black than white chair. Any
valid rearrangement must move each student to a chair of the opposite color. The conditions cannot be
satisfied since there is one more black chair than white chair, so some student seated in a black chair
will have nowhere to go.

2 Since 24= 3+ 5+ 7+ 9, the number 24 can be written as the sum of at least two consecutive odd
positive integers.

(a) Can 2005 be written as the sum of at least two consecutive odd positive integers? If yes, give an
example of how it can be done. If no, provide a proof why not.



(b) Can 2006 be written as the sum of at least two consecutive odd positive integers? If yes, give an
example of how it can be done. If no, provide a proof why not.

Solution: Let N = (2k+1)+ (2k+3)+ · · ·+(2k+2n−1) wheren andk are integers,n≥ 2, k≥ 0.
ThenN = [(2k+1)+ (2k+2n−1)]n/2 = (2k+n)n, which is a product of two integers with the same
parity, since adding the even number 2k to the integern does not change its parity.

1. Since 2005= 401·5, takingn = 5 gives 2k+ 5 = 401, i.e. 2k+ 1 = 397. Checking, we see that
397+399+401+403+405= 401·5 = 2005, so 2005canbe represented as the sum of at least
two consecutive odd positive integers.

2. Since 2006= 2·1003= 2·17·59 is divisible by 2 but not by 4, every pair of integers with a product
of 2006 consists of two integers with different parity, (i.e. one odd and one even). Therefore 2006
cannotbe represented as the sum of at least two consecutive odd positive integers.

3 In triangleABC, choose pointA1 on sideBC, point B1 on sideCA, and pointC1 on sideAB in such a
way that the three segmentsAA1, BB1, andCC1 intersect in one pointP. Prove thatP is the centroid of
triangleABC if and only if P is the centroid of triangleA1B1C1.

Note: A median in a triangle is a segment connecting a vertex of the triangle with the midpoint of the
opposite side. The centroid of a triangle is the intersection point of the three medians of the triangle.
The centroid of a triangle is also known by the names ”center of mass” and ”medicenter” of the triangle.

Solution 1: Assume first thatP is the centroid of4ABC. This means thatAA1, BB1 andCC1 are the
medians of4ABC, and henceA1, B1 andC1 are the midpoints ofBC, CA andAB, respectively. As a
midsegment of4ABC, segmentB1A1 is parallel toAB, and similarly,C1A1 is parallel toAC. In the
parallelogramAC1A1B1, the diagonalsAA1 andB1C1 bisect each other. In particular,AA1 contains the
median of4A1B1C1 passing through vertexA1. Similarly, BB1, respectivelyCC1, contains the median
of4A1B1C1 passing through vertexB1, respectivelyC1. SinceAA1, BB1 andCC1 intersect inP and they
are extensions of the three medians of4ABC, by definition,P is also the centroid of4A1B1C1, and we
are done with this part.
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For the other part of the problem, assume thatP is the centroid of4A1B1C1. We construct4A′B′C′ in
the following way. Draw a line throughA1 parallel toB1C1, another line throughB1 parallel toC1A1, and
a third line throughC1 parallel toA1B1. Let the three lines intersect pairwise in pointsA′, B′ andC′ so
thatA1 lies onB′C′, B1 lies onC′A′, andC1 lies onA′B′. From parallelogramsB′A1B1C1 andC′B1C1A1, it
follows thatC′A1 = B1C1 = B′A1, i.e. A1 is the midpoint ofB′C′. Similarly,B1 andC1 are the midpoints
of C′A′ andA′B′, respectively. Further, from the same parallelograms follows, for instance, thatC′C1



bisectsA1B1, and henceC′C1 contains the median of4A1B1C1 and therefore it passes through pointP.
Similarly, B′B1 andA′A1 pass throughP. Thus,A′A1, B′B1 andC′C1 intersect in pointP, and are the
medians in4A′B′C′. HenceP is the centroid of4A′B′C′ too. (Note that4A′B′C′ could be alternatively
constructed as the image of4A1B1C1 via a homothety with centerP and ratio 1:2, following the famous
fact that every centroid divides the medians in ratio 2:1 counted from the vertices.)

It remains to show that4A′B′C′ coincides with4 ABC. By contradiction, suppose that they are not the
same triangle. Without loss of generality, we may assume that pointA is different from pointA′. By
hypothesis and construction, bothA andA′ lie on lineA1P, and similarly bothB andB′ lie on lineB1P,
and bothC andC′ lie on lineC1P. SinceA andA′ are different, it is not hard to see that there are only
two possibilities for their relative positions:A′ is betweenA andP, or A is betweenA′andP. In the
first case,A is outside of4A′B′C′, while in the second case,A is inside4A′B′C′. If we are in the first
case, drawing lineAC1 to intersectB′B1 in B placesB inside4A′B′C′; then drawing lineBA1 to intersect
C′C1 in C placesC outside4A′B′C′. Thus,4APC properly contains4A′PC′, and henceB1 is inside
4APC; well, this certainly doesn’t make sense sinceB1 is supposed to lie on sideAC by hypothesis.
This contradiction eliminates the first case mentioned above.

The second case (A betweenA′ andP) is treated similarly and leads to pointB1 being outside4APC,
while it is supposed to lie on sideAC: again a contradiction.

This exhausts all possible situations and implies that the initial assumption ofA andA′ being different
is false. But ifA = A′, one quickly discovers thatB andB′ must also coincide, as well asC andC′. In
conclusion,4ABC is4A′B′C′ constructed earlier, and hence4ABC’s centroid is already shown to be
pointP. This concludes the proof.

Solution 2: The first part of the problem: “ifP is the centroid of4ABC thenP is also the centroid of
4A1B1C1”, is shown the way same as in Solution 1.

For the second part, suppose thatP is the centroid of4A1B1C1. Denote byA2,B2 andC2 the midpoints
of the corresponding sides of4A1B1C1 so thatA,A2,P,A1 are collinear, etc. We shall use the following:

[Part of] Menelaus Theorem.Given4XYZ, let line l intersect lineXY in pointL, lineYZ in pointM,
and lineZX in pointN. (L, M andN can each be inside or outside of the corresponding side of4XYZ.)
Then
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Apply Menelaus Theorem to4B1C1B and lineAA2P:
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SinceB1A2 = A2C1, we obtain
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· (1)

Using now4B1A1B and lineCC2P, we similarly obtain
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Equating (1) and (2) yields:
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The last equality, and the fact that4C1BA1 and4ABCshare the same angle∠B, shows that these two
triangles are similar, from which we can conclude thatC1A1 is parallel toAC. Applying similar argu-
ments, one shows thatA1B1 is parallel toBA, andB1C1 is parallel toCB. Now we are in a situation
identical to the construction of4A′B′C′ in Solution 1, where we easily showed thatP is the centroid of
4A′B′C′, and hence in our present situation,P is the centroid of4ABC.

4 Suppose thatn squares of an infinite square grid are colored grey, and the rest are colored white. At
each step, a new grid of squares is obtained based on the previous one, as follows. For each location in
the grid, examine that square, the square immediately above, and the square immediately to the right.
If there are two or three grey squares among these three, then in the next grid, color that location grey;
otherwise, color it white. Prove that after at mostn steps all the squares in the grid will be white.

Below is an example withn = 4. The first grid shows the initial configuration, and the second grid
shows the configuration after one step.

Solution: (Sketch) Use strong induction. Consider the smallest rectangleR that contains all the black
squares. Suppose this rectangle containsr squares. Assume any rectangle that containsk < r squares
will convert to all white squares afterk steps. SinceR is the smallest rectangle, its left-most column
and its bottom row must contain some black squares. So the rectangle with the left-most column ofR
removed and the rectangle with the bottom row removed must both have less thanr black squares. So
both of those rectangles must be converted to all white afterr − 1 steps. (We are using the fact that
squares below and to the left of a rectangle cannot affect the evolution of the squares within that rect-
angle.) So, afterr−1 steps,R would have been converted to all white squares except for possibly the
lower left corner square. But even if that square is black, therth conversion will convert that square into
white square.

5 We havek switches arranged in a row, and each switch points up, down, left, or right. Whenever three
successive switches all point in different directions, all three may be simultaneously turned so as to point
in the fourth direction. Prove that this operation cannot be repeated infinitely many times.



Solution: Number the switches 1,2, . . . ,k. For any given configuration of switches, let the “height”
of the configuration be the product of all values ofn for which switchesn−1 andn point in the same
direction (or 1 if there are no suchn); this is always a positive integer. We claim that the height increases
with every operation. Indeed, consider the operation in which switchesn,n+1,n+2 are turned. Before
this operation, switchesn−1 andn may (or may not) have pointed in the same direction, as mayn+2
andn+ 3; no other such pairs can be broken, so the height is divided by at mostn(n+ 3). However,
the pairsn,n+1 andn+1,n+2 are created, multiplying the height by(n+1)(n+2). Thus ifh is the
height of a configuration, then the new heighth′ after one move satisfies:

h′ ≥ h· (n+1)(n+2)
n(n+3)

= h· n2 +3n+2
n2 +3n

> h.

So, as claimed, the height does increase at every step. Since the height is an increasing integer, and it
cannot exceed 1×2×·· ·×k, it can only increase finitely many times, and the result follows.

REMARK : There are other height functions. For example, ifh denotes the sum of all numbers
√

k for
which switchesk andk+1 point in different directions, then it can be easily proved (as in the solution
above) thath can only decrease. Since there are only finitely many values forh, one cannot perform the
moves infinitely long.

More advanced readers can attempt to construct more height functions using “concave-down” functions.
The goal is to come up with a positive valued functionf (n) for all positive integersn such that, for
examplef (n) · f (n+ 3) < f (n+ 1) · f (n+ 2) for all suchn, or f (n)+ f (n+ 3) < f (n+ 1)+ f (n+ 2)
for all suchn.
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