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Problems (with Solutions)

1 A square grid of 16 dots (see the figure) contains the corners of nine 1× 1 squares, four 2× 2 squares, and one
3×3 square, for a total of 14 squares whose sides are parallel to the sides of the grid. What is the smallest possible
number of dots you can remove so that, after removing those dots, each of the 14 squares is missing at least one
corner?

Justify your answer by showing both that the number of dots you claim is sufficient and by explaining why no
smaller number of dots will work.

Solution:
The answer is four dots.

Four is necessary, because the four corner 1×1 squares do not share any dots in common. Other arguments that
four is necessary include using the 2×2 squares, or carefully counting the number of squares eliminated by each
dot (5 in the center and 3 in the corner), and since one dot must be a corner dot, then at most 3+5+5 squares can
be removed by three dots.

Removing two opposite corners of the grid and two center dots along the other diagonal provides an example to
show that four is sufficient.

See the figure for one of two such possible solutions.
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2 The Fibonacci sequence is the list of numbers that begins 1, 2, 3, 5, 8, 13 and continues with each subsequent
number being the sum of the previous two.

Prove that when the first n elements of the Fibonacci sequence are alternately added and subtracted, the result is
an element of the sequence or the negative of an element of the sequence. For example,

1−2+3−5 =−3,

and 3 is an element of the Fibonacci sequence.

Solution: Expanding each number as the sum of the two previous numbers gives, for example,

1−2+3−5+8−13 = 1− (1+1)+(1+2)− (2+3)+(3+5)− (5+8).

Now, after removing parentheses, this is a telescoping series: each term subtracts out with its neighbor, so what’s
left is the last term of this expanded sum, or the second-to-last term of the original sum.

= 1−1−1+1+2−2−3+3+5−5−8 =−8.

To make it clear that this pattern always works, it would be nice to write all of this in terms of Fn, the nth number
in the list. When doing so, the previous expression becomes

F1−F2 +F3− . . .±Fn = (F1)− (F0 +F1)+(F1 +F2)− . . .± (Fn−2 +Fn−1)

and so this works for all n because F0 = F1, so every pair of consecutive terms in this long expression adds up to
0, except for the Fn−1 at the end.

Sketch of alternate solution:
Pair up the terms. For our example above,

1−2+3−5+8−13 = (1−2)+(3−5)+(8−13) = 1+2+5,

which shows that after the initial 1 we get every other term of the sequence. Then, we add, with 1+2 = 3, and then
3+5 = 8. To make it clear that this pattern always works, you will need to consider examples with an odd number
of terms as well as showing that F1 +F2 +F4 + . . .+F2n = F2n+1.

Other good arguments include a proof by mathematical induction, which supposes that this pattern works for the
sum up to Fn and then proves that it continues working for the sum up to Fn+1.
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3 There are many sets of two different positive integers a and b, both less than 50, such that a2 and b2 end in the
same last two digits. For example, 352 = 1225 and 452 = 2025 both end in 25. What are all possible values for
the average of a and b?

For the purposes of this problem, single-digit squares are considered to have a leading zero, so for example we
consider 22 to end with the digits 04, not 4.

Solution: Assume that b is the larger of the two numbers. Then b2 and a2 end in the same last two digits, so
b2−a2 is a multiple of 100. That is, using the difference of squares to factor, (b+a) · (b−a) is a multiple of 100,
and hence also a multiple of both 4 and 25.

For the product to be a multiple of 25, either at least one of the numbers is a multiple of 25, or both are multiples
of 5. If they are both multiples of 5, then a must be a multiple of 5, so a2 ends in 25 or 00. There are many
possibilities of this kind: Ending in 25, we have 5 and 15, 5 and 25, 5 and 35, and so on, up through 35 and 45,
giving averages of 10, 15, 20, 25, 30, 35, and 40. Ending in 00, we have 10 and 20, and so on, up through 30 and
40, which gives the same list of averages. (We did give credit if you included 50 and thus put 45 in your list of
possible averages.)

Now let’s consider the possibility that one of the numbers is a multiple of 25. Neither a−b nor a+b could equal
25 or 75, because if they did, then one of a and b is odd, while the other is even, so their squares can’t end in the
same digit. Also, b−a can’t be 50, because b < 50. So the only way to obtain a multiple of 25 is for b+a = 50,
in which case the average is 25.

Of course, you could also simply list all the squares from 12 through 492 and find all the pairs with the same last
two digits!
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4 Seven congruent line segments are connected together at their endpoints as shown in the figure below at the left.
By raising point E the linkage can be made taller, as shown in the figure below and to the right. Continuing to
raise E in this manner, it is possible to use the linkage to make A, C, F , and E collinear, while simultaneously
making B, G, D, and E collinear, thereby constructing a new triangle ABE.

Prove that a regular polygon with center E can be formed from a number of copies of this new triangle ABE,
joined together at point E, and without overlapping interiors. Also find the number of sides of this polygon and
justify your answer.
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Solution: We are given ED = EF = FG = DC = BC = AG = AB. Let ∠E = x. (To aid in reading the
proof, note the measures of the marked angles in the figure below.) Since 4EDC and 4EFG are isosceles,
∠ECD = x = ∠EGF . An exterior angle of a triangle has a measure equal to the sum of the remote interior an-
gles, so ∠AFG = 2x = ∠BDC. Since4AFG and4BDC are isosceles, ∠FAG = 2x = ∠DBC. ∠ACB and ∠BGA
are exterior angles of 4ECB and 4EGA, respectively, so they each have measure x + 2x = 3x. But 4ABC and
4BAG are isosceles, so ∠GBA = 3x and similarly ∠CAB = 3x. Since the base angles of4AEB are equal we have
AE = BE. (Note that proving triangle ABE is isosceles was necessary for a solution to be regarded as correct.)
Summing the angles of 4AEB we get 3x + 3x + x = 7x = 180◦. Therefore 14x = 360◦ and the polygon formed
by 14 such triangles is a 14-gon.

A B

GC

D

E

F

x

x

2x 2x

2x 2x

x

x

3x 3x

x



BAMO 2009 Problems and Solutions March 8, 2009 5

5 A set S of positive integers is called magic if for any two distinct members of S, i and j,

i+ j
GCD(i, j)

is also a member of S. The GCD, or greatest common divisor, of two positive integers is the largest integer that
divides evenly into both of them; for example, GCD(36,80) = 4.

Find and describe all finite magic sets.

Solution: Suppose there are two members i and j whose GCD is 1. Then i+ j is also in S. But GCD( j, i+ j) is
also 1, so i+2 j is also in S. Continuing, i+ k j is in S for all integers k, so the set is infinite.

The only remaining possibility for a finite magic set with at least two elements is that the GCD of any pair of
numbers in the set is greater than 1. Now let i and j be the two smallest members of S, with i < j. Then i+ j

GCD(i, j)
is also in the set, but since the GCD is at least 2, this number is smaller than j, and thus must be equal to i.

Therefore i + j = i ·GCD(i, j), and since the right hand side is a multiple of i, so is the left side. Thus j is a
multiple of i, and thus GCD(i, j) = i, and so i+ j = i2.

Now if S has more than two elements, let n be the smallest element greater than j. By the same argument as
before, i+n

GCD(i,n) is smaller than n, but since n > j = i2− i, n + i > i2, and GCD(i,n) ≤ i, then i+n
GCD(i,n) > i. Any

element of S that is between i and n must equal j, so i+n
GCD(i,n) = j, or in other words n = (i2− i)GCD(i,n)− i.

Since n is divisible by i, GCD(i,n) = i and substituting gives n = i3− i2− i. Now consider the third pair, with j
and n. Their GCD is also i, because j = i(i− 1) and n = i(i2− i− 1), and i2− i− 1 = (i− 1)i− 1 is relatively
prime to i−1.

Finally, j+n
GCD( j,n) = (i2−i)+(i3−i2−i)

i = i2− 2 < n, so i2− 2 = i or i2− 2 = j = i2− i. Both cases imply that i = 2,
from where j = 2 = n, a contradiction of our assumption that S has at least two elements.

Therefore, all finite magic sets consist either of one element, or of two elements: S = {i, i2− i} for any i≥ 3.
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6 At the start of this problem, six frogs are sitting with one at each of the six vertices of a regular hexagon. Every
minute, we choose a frog to jump over another frog using one of the two rules illustrated below. If a frog at point
F jumps over a frog at point P, the frog will land at point F ′ such that F , P, and F ′ are collinear and:

• using Rule 1, F ′P = 2FP.

• using Rule 2, F ′P = FP/2.

  Rule 1                                                                     Rule 2

F'

F'

F
P P

F

It is up to us to choose which frog to take the leap and which frog to jump over.

(a) If we only use Rule 1, is it possible for some frog to land at the center of the original hexagon after a finite
amount of time?

(b) If both Rule 1 and Rule 2 are allowed (freely choosing which rule to use, which frog to jump, and which
frog it jumps over), is it possible for some frog to land at the center of the original hexagon after a finite
amount of time?

Solution:

(a) Assign coordinate axes making a 120◦ angle so that the center of the hexagon is at (0,0), the rightmost frog
is at (1,0), and the top left frog is at (0,1). Then, the remaining four frogs are at (1,1), (−1,0), (0,−1),
and (−1,−1). At each jump, if two frogs’ coordinates differ by (x,y), then the jumping frog moves (3x,3y).
That is, each coordinate changes by a multiple of three. However, the goal has both coordinates divisible by
three, and none of the frogs start with both coordinates divisible by three, so it cannot be done.

(b) One solution method is to repeat the coordinate method of the previous problem, but now encountering
fractions when we use Rule 2. Since the jumping frog now moves (3x/2,3y/2) when the frogs are separated
by (x,y), looking at the first coordinate a frog’s jump will now be

p
q
→ p

q
+

3x
2

=
2p+3qx

2q
.

If p is not divisible by 3 before this jump, the numerator of this new fraction is still not divisible by 3. Since
the frogs start with at least one coordinate’s numerator not divisible by 3, the frogs can never reach a location
where both coordinates have numerators that are divisible by 3.
Alternatively, each time Rule 2 is used, simply double all the coordinates before making the jump. This
cannot change whether a frog can reach the origin, and it ensures that the coordinates remain integers and
that the jumps are all by a multiple of 3, so the same argument for Rule 1 still works.
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7 Let4ABC be an acute triangle with angles α, β, and γ. Prove that

cosα

cos(β− γ)
+

cosβ

cos(γ−α)
+

cosγ

cos(α−β)
≥ 3

2
.

Solution:
Since cosγ = −cos(α + β) = −cosαcosβ + sinαsinβ, and cos(α− β) = cosαcosβ + sinαsinβ the given in-
equality transforms to

sinβsinγ− cosβcosγ

sinβsinγ+ cosβcosγ
+

sinγsinα− cosγcosα

sinγsinα+ cosγcosα

+
sinαsinβ− cosαcosβ

sinαsinβ+ cosαcosβ
≥ 3

2
tanβ tanγ−1
tanβ tanγ+1

+
tanγ tanα−1
tanγ tanα+1

+
tanα tanβ−1
tanα tanβ+1

≥ 3
2
.

Some elementary trigonometry yields

tanα+ tanβ+ tanγ =
sinαcosβcosγ+ sinβcosαcosγ+ sinγcosαcosβ

cosαcosβcosγ

=
sinαcosβcosγ+ cosα(sinβcosγ+ sinγcosβ)

cosαcosβcosγ

=
sinαcosβcosγ+ cosαsin(β+ γ)

cosαcosβcosγ

Now we use the fact that the angles add to 180◦ to see that sin(β+ γ) = sin(α), so

sinαcosβcosγ+ cosαsin(β+ γ)
cosαcosβcosγ

=
sinαcosβcosγ+ cosαsinα

cosαcosβcosγ

=
sinα · (cosβcosγ+ cosα)

cosαcosβcosγ

=
sinα · (cosβcosγ− cos(β+ γ))

cosαcosβcosγ

=
sinα · (cosβcosγ− (cosβcosγ− sinβsinγ))

cosαcosβcosγ

= tanα tanβ tanγ.

Now, setting x = tanα and so on, our inequality

yz−1
yz+1

+
zx−1
zx+1

+
xy−1
xy+1

≥ 3
2

has the property that x, y, z are positive real numbers satisfying x+ y+ z = xyz.
Multiplying the numerator and the denominator of the first fraction by x, second by y and third by z the inequality
becomes

S− x
S + x

+
S− y
S + y

+
S− z
S + z

≥ 3
2
, (1)

for S = xyz. Using the substitution S + x = a, S + y = b, S + z = c and solving for S, x, y, z we get S = a+b+c
4 ,

x = 3a−b−c
4 , y = 3b−a−c

4 , z = 3c−a−b
4 , S− x = b+c−a

2 , S− y = c+a−b
2 , S− z = a+b−c

2 , and (1) becomes

1
2

(
b
a

+
c
a
−1+

a
b

+
c
b
−1+

a
c

+
b
c
−1

)
≥ 3

2
.

This immediately follows from b
a + a

b ≥ 2, a
c + c

a ≥ 2, and c
b + b

c ≥ 2.

Remark. Once the inequality is transformed to (1) we can use the convexity of the function f (t) = S−t
S+t and

Jensen’s inequality:
1
3

( f (x)+ f (y)+ f (z))≥ f
(

x+ y+ z
3

)
.

It can be easily seen that the previous inequality is exactly (1).
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Solution 2, earning a Brilliancy award for Amol Aggarwal of Saratoga HS:
Let O be the circumcenter of4ABC. Extend AO to meet BC at X , and similarly BO extends to Y and CO to Z.

As shown in the diagram at left below, draw AA′ parallel to BC, drop the altitude AH from point A, and also draw
MO, the perpendicular bisector of BC, meeting AA′ at N.

Now AHMN is a rectangle, so AH = MN. Also, ABCA′ is a cyclic trapezoid and thus isosceles, so ∠A′BC =
∠ACB = γ. Thus ∠ABA′ = ∠ABC = ∠ACB = β− γ, so the measure of arc AA′ = 2(β− γ), which means that
∠AON = β− γ. Using right triangle ONA, we have ON = OAcos(β− γ).

Again using central and inscribed angles, arc BC = 2α so ∠BOM = α and OM = OBcosα. Dividing OM by ON,

OM
ON

=
OBcosα

OAcos(β− γ)
=

cosα

cos(β− γ)
.

Finally, because AA′ ‖ BC,4ANO∼4XMO, which gives OX
OA = OM

ON .

Now by symmetry, we can find similar relationships for all three fractions in the original inequality, so our goal
now is to prove that

OX
OA

+
OY
OB

+
OZ
OC
≥ 3

2
.

BB

OO
MM

HH

XX
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In the figure at right above, the area ratio
AO
AX

=
[ABOC]
[ABC]

, so adding analogous terms for each of the three ratios,

AO
AX

+
BO
BY

+
CO
CZ

=
[ABOC]+ [BCOA]+ [AOBC]

[ABC]
= 2,

since the numerator counts the area of each piece exactly twice.

Next, by the arithmetic mean - harmonic mean inequality (or Cauchy-Schwarz if you prefer),(
AO
AX

+
BO
BY

+
CO
CZ

)(
AX
AO

+
BY
BO

+
CZ
CO

)
≥ 9.

Finally, since AX
AO = 1 + OX

AO and similarly for the other two fractions, we can first divide by 2 and then subtract 3
from each side,

OX
OA

+
OY
OB

+
OZ
OC
≥ 9

2
−3 =

3
2
.


