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The problems from BAMO-8 are A–E, and the problems from BAMO-12 are 1–5.

A A trapezoid is divided into seven strips of equal width as shown. What fraction of the trapezoid’s
area is shaded? Explain why your answer is correct.

Solution. We can fit the trapezoid together with a rotated copy of itself to make a parallelogram:

The stripes on the two trapezoids join to make seven stripes across the parallelogram. These stripes

are congruent to each other, so the shaded ones cover exactly
4
7

of the area of the parallelogram.

Since the two copies of the original trapezoid are identical, the stripes must also cover
4
7

of the area

of each trapezoid.

B Four friends, Anna, Bob, Celia, and David, exchanged some money. For any two of these friends,
exactly one gave some money to the other. For example, Celia could have given money to David but
then David would not have given money to Celia. In the end, each person broke even (meaning that
no one made or lost any money).

(a) Is it possible that the amounts of money given were $10, $20, $30, $40, $50, and $60?

(b) Is it possible that the amounts of money given were $20, $30, $40, $50, $60, and $70?

For each part, if your answer is yes, show that the situation is possible by describing who could have
given what amounts to whom. If your answer is no, prove that the situation is not possible.

Solution. The answer to (a) is yes. For example, the transactions could be as follows:



A B

C D

$60

$50

$10$20

$30

$40

The answer to (b) is no. Let’s reason by contradiction: assume that it is possible for the four friends
to exchange the amounts $20, $30, $40, $50, $60, and $70. Without loss of generality, assume that A
gave $60 to B. Then A must have received payments of $20 and $40 (since 60 = 20+40 is the only
way to write 60 as a sum or difference of two numbers among 20, 30, 40, 50, and 70). By the exact
same reasoning, B must have given away $20 and $40; and yet those amounts were received by A.
Hence, B must have given $20 or $40 to A, contradicting that A gave B money. This shows that our
assumption is false, and that it is not possible for the four friends to exchange the amounts $20, $30,
$40, $50, $60, and $70.

C/1 Find all real numbers x that satisfy the equation
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and simplify your answer(s) as much as possible. Justify your solution.

Solution 1. The number x = 2021 works. Indeed, for x = 2021, the left-hand side of the equation
equals
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and the right-hand side of the equation equals the same number:
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= 21.

Why is x = 2021 the only solution? The equation is linear: after simplifying it, it can be put into the

form ax+b = 0. Such equations have a unique solution, namely, x =−b
a

, as long as the coefficient
a of x is not 0. In our situation, x is multiplied by
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However, each of the 21 fractions in the first sum S1 is bigger than each of the 21 fractions in the
second sum S2. Thus, S1 > S2 and a > 0. Since a 6= 0, the equation has a unique solution, which we
found earlier to be x = 2021.

Solution 2. If we subtract 21 from both sides (i.e., we subtract 1 from each of the 21 fractions on
both sides), we obtain
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or (
1
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which implies x−2021 = 0, or x = 2021.

Remark. The problem is adapted from Regalia-6 publ., Sofia, Bulgaria.

D/2 Consider a sheet of paper in the shape of an equilateral triangle creased along the dashed lines as in
the figure below on the left. Folding over each of the three corners along the dashed lines creates a
new object which is uniformly four layers thick, as in the figure below on the right. The number in
each region indicates that region’s thickness (in layers of paper).

We have just seen one example of how a plane figure can be folded into an object with a uniform
thickness. This problem asks you to produce several other examples. In each case, you may fold
along any lines. The different parts that are folded may or may not be congruent. Assume that paper
may be folded any number of times without tearing or becoming too thick to fold. If needed, you
can use any of the following tools:

• a magic ruler with which you can draw a line through any two given points and you can split
any segment into as many equal parts as you wish; and

• a right triangle tool with which you can drop perpendiculars from points to lines and erect
perpendiculars to lines from points on them.

Given these rules:

(a) Show how to fold an equilateral triangle into an object with a uniform thickness of 3 layers.

(b) Show how to fold a 30◦-60◦-90◦ triangle into an object with a uniform thickness of 3 layers.

(c) Show that every triangle can be folded into an object with a uniform thickness of 2020 layers.

Solution.

(a) Divide the sides of the triangle into three equal parts and connect them with lines as in the figure
on the left below.



Now crease and fold along the dotted lines to form the figure in the center. Finally, fold along
the dashed lines in the center figure to form the figure on the right.

(b) Divide the triangle into three triangles as shown in the figure on the left below. (The upper
dashed line is the perpendicular bisector of the hypotenuse and its intersection with the vertical
edge is connected to the lower-right vertex of the triangle.)

Now crease and fold along the two dashed lines to achieve the figure on the right.

(c) In fact, any triangle can be folded to a uniform thickness of 2n layers for any positive integer n.
Label the vertices of the triangle A,B,C so that AB is the longest side, guaranteeing that ∠A and
∠B are acute. Let points D and E bisect the segments AC and BC. Next drop perpendiculars
from D and E to AB and fold along the three dashed lines to form the rectangle in the upper right
of the figure below.

That rectangle is 2 layers thick. To make an object of 2n layers, divide the rectangle’s top and
bottom edges into n equal pieces and connect pairs of points to make n regions. Folding along
all n−1 dashed lines will produce an object with 2n layers. The figure demonstrates how to do
this if n = 3, yielding an object with 2n = 6 layers. For 2020 layers, let n = 1010.

E/3 The integer 202020 is a multiple of 91. For every positive integer n, show how n additional 2’s may
be inserted into the digits of 202020 so that the resulting (n+6)-digit integer is also a multiple of 91.

For example, a possible way to do this when n = 5 is 22020220222 (the inserted 2’s are underlined).

Solution. Every integer of the form 202 . . .2020 (where the dots represent any number of 2’s) is
divisible by 91. There are a variety of ways to discover and prove this fact, some of which we outline
here:

Method 1. For n = 1, there are four options: 2202020, 2022020, 2020220, and 2020202. Long
division shows that only 2022020 is divisible by 91. Let a0 = 202020 and a1 = 2022020.
Then a1− a0 = 1820000. Clearly, adding 182 · 10k for some k ≥ 0 preserves divisibility
by 91. From this, we conjecture that recursively defining an = an−1 +182 ·10n+3 yields



integers of the desired form. We let . . .2 denote a string of n twos and . . .0 denote a string of
n zeros. If an−1 = 20 . . .2 020, then

an = an−1 +182 ·10n+3 = 20 . . .2 020+182 . . .0 000 = 202 . . .2 020.

By induction, it follows that an is a multiple of 91 of the form 202 . . .2020, for any n≥ 0.

Method 2. As in (a), we can see that the only solution for n = 1 is 2022020. Let a0 = 202020 and
2022020. Then a1−10a0 = 1820. Clearly, adding 1820 preserves divisibility by 91. We
conjecture that recursively defining an = 10an−1 + 1820 yields integers of the desired
form. If an−1 = 202 . . .2020, then

an = 10an−1 +1820 = 10 ·202 . . .2020+1820 = 202 · · ·20200+1820 = 202 . . .22020.

By induction, it follows that an is a multiple of 91 of the form 202 . . .2020, for any n≥ 0.

Method 3. Long division or factoring yields 202020÷91 = 2220, so we conjecture that 22220×91,
222220×91, etc. will have a nice pattern of digits. Indeed, these numbers are of the form
202 · · ·2020 (where the dots represent 2’s), and we can explain why with long arithmetic:

222 · · ·20 × 100 = 222 · · ·2000
− 222 · · ·20 × 10 = − 22 · · ·2200
+ 222 · · ·20 × 1 = + 2 · · ·2220

222 · · ·20 × 91 = 202 · · ·2020

(all ellipses represent strings of 2’s which may be made any length).

Method 4. As in (a), we see that the only solution for n = 1 is 2022020. Let . . .2 denote a string
of n twos, for any n ≥ 0. We conjecture that an = 20 . . .2 020 is divisible by 91 for any
n≥ 0. We can check that a1 = 202020 and a0 = 2002 are divisible by 91. Since 1000≡
−1 (mod 91), we have

an+2 = 20 . . .2 22020 = 1000 ·20 . . .2 22+20

≡ 1000 · (20 . . .2 22−20) = 1000 ·20 . . .2 02

= 100 ·20 . . .2 020 = 100 ·an (mod 91).

But gcd(100,91) = 1, so if 91 | an, then 91 | an+2. By induction, we have 91 | an for all
n≥ 0.

Method 5. As in (a), we see that the only solution for n = 1 is 2022020. Let . . .2 denote a string of n
twos, for n≥ 0. Notice that −10 ·9≡ 1 and 103 ≡−1 (mod 91). Therefore,

20 . . .2 020 = 22 . . .2 222−2 ·10k+3−202

≡ 2
9 ·99 . . .999+2 ·10k−20

≡−20 · (10k+5−1)+2 ·10k−20

=−2 ·10k+6 +20+2 ·10k−20

≡−2 ·10k +2 ·10k = 0 (mod 91).

Remark. A BAMO contestant solved this problem by proving the polynomial identity (x2− x+
1)(xk +xk−1 + · · ·+x+1) = xk+2 +(xk +xk−1 +xk−2 + · · ·+x4 +x3 +x2)+1, valid for each integer
k ≥ 2. Substituting x = 10 leads to a solution similar to Method 3 above, but other values may be
substituted for x to show an analogous result in any number base.



4 Consider 4ABC. Choose a point M on its side BC and let O be the center of the circle passing
through the vertices of 4ABM. Let k be the circle that passes through A and M and whose center
lies on line BC. Let line MO intersect k again in point K. Prove that the line BK is the same for any
choice of point M on segment BC, so long as all of these constructions are well-defined.

Solution. Let D be the reflection of A across side BC, which clearly lies on k. Let K′ be the point
where lines BD and MO intersect. We will eventually show that K′ = K. Then K lies on line BD,
which is therefore the same as line BK. Since B and D don’t depend on the choice of M, this proves
that the line BK does not depend on M, if all of the constructions are well-defined. One possible
configuration is illustrated below. Notice that we cannot have M = B, because then the circumcenter
O of triangle4ABM would not be well-defined (we will need this later).

•A

• D

•
B

•C•M

•O

•K = K′

k

We first show that ∠AMO =∠BDA, by focusing on the circumcircle of4ABM, as illustrated below.
Let L be the point diametrically opposite M. Then ∠LAM is right and thus ∠AMO = 90◦−∠ALM.
Since AD⊥BM, we have ∠BDA=∠BAD= 90◦−∠ABM. But the angles ∠ABM and ∠ALM subtend
the same arc, so ∠ABM = ∠ALM and thus ∠BDA = ∠AMO, as desired.



•
O

•
B

•
M

•L
•
A

• D

We will now show that the points A, D, M, and K′ are concyclic. Recall the following theorem.

A convex quadrilateral EFGH is cyclic if either of the following are true:

(1) ∠EFG+∠EHG = 180◦. (2) ∠EGF = ∠EHF.

We will apply this theorem to four separate cases, illustrated below.

(a.i)

· · · •
K′

•
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•
B

• M

•
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•O

(a.ii)
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•
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(b.i)
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(b.ii)

•
K′

•
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•
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•
M

•
A

•
O

(a) Suppose that M lies to the right of AD. Then O and K′ are on the same side of M.

i. If B and K′ are on the same side of D, then ∠AMK′ =∠AMO =∠ADB =∠ADK′. There-
fore, quadrilateral AMDK′ is cyclic by condition (2).



ii. If B and K′ are on opposite sides of D, then ∠AMK′ =∠AMO =∠ADB = 180◦−∠ADK′,
so ∠AMK′+∠ADK′ = 180◦. Therefore, quadrilateral AMK′D is cyclic by condition (1).

(b) Now suppose that M lies to the left of AD. Then O and K′ are on opposite sides of M.

i. If B and K′ are on the same side of D, then ∠ADK′ =∠ADB =∠AMO = 180◦−∠AMK′,
so ∠ADK′+∠AMK′ = 180◦. Therefore, quadrilateral ADK′M is cyclic by condition (1).

ii. If B and K′ are on opposite sides of D, then ∠ADK′ = 180◦−∠ADB = 180◦−∠AMO =
∠AMK′. Therefore, quadrilateral AK′DM is cyclic by condition (2).

This proves that the points A, D, M, and K′ are concyclic. Since k is the unique circle going through
points A, D, and M, it follows that K′ lies on k. Thus K′ lies on line MO and circle k, so we have
K′ = K or K′ = M. But if K′ = M, then M lies on line BD and thus M = B. We noted above that this
cannot be the case (or O will not be well-defined), so we have K = K′, as desired.

Remark. Matyas Sustik points out that M is the center of the in- or excircle of 4ABK; a solution
can be constructed on this basis.

5 Let S be a set of a+b+3 points on a sphere, where a,b are nonnegative integers and no four points
of S are coplanar (that is, no four points lie on a plane). Determine how many planes pass through
three points of S and separate the remaining points into a points on one side of the plane and b points
on the other side.

Solution. Let f (a,b) be the number of oriented planes through three of the given a+ b+ 3 points,
such that exactly a points lie above the plane (a plane divides 3D-space into two regions; an oriented
plane can be thought of as a plane and a choice of one side “above” the plane). We then recover g as

g(a,b) =
{

f (a,b), a 6= b
1
2 f (a,b), a = b

because each plane is counted twice when a = b.

We begin by calculating f (a,0). Consider the convex hull Σ of our a+3 points. This is a polyhedron,
so we apply Euler’s formula V−E+F = 2. Since our a+3 points lie on a sphere, they are all vertices
of Σ and hence V = a+3. No four of our points are coplanar, so each face of Σ is a triangle and thus
2E = 3F. Therefore,

F = 3F−2F = 2E−2(2−V +E) = 2(V −2) = 2(a+1).

But a plane through three of our points has all the other points on one side iff it does not cut through
the interior of Σ, i.e. iff it is a face of Σ (the orientation should be such that the other points lie above
the plane of this face). Hence f (a,0) = F = 2(a+1).

Next, notice that f (a,b) = f (b,a) for any a,b ≥ 0, because reversing the orientations of all planes
interchanges the roles of a and b. Moreover, if n = a+b+3, then there are a total of 2

(n
3

)
oriented

planes passing through three of our points, so f (n−3,0)+ f (n−4,1)+ · · ·+ f (1,n−4)+ f (0,n−
3) = 2

(n
3

)
. Some small values of f (a,b) can now be calculated directly:

0 1 2 3
0 2 4 6 8
1 4 8 12
2 6 12
3 8



Based on these small cases, we conjecture that

f (a,b) = 2(a+1)(b+1). (∗)

We will prove this by induction.

Consider a fixed arrangement of n+1 points (on a sphere, with no four points coplanar) and suppose
that (∗) holds for any n points (the base case of n = 3 is trivial). Consider a,b≥ 0 with a+b+3 = n.
Let Sa,b denote the set of all pairs (P,Π), where P is one of our n + 1 points, Π is an oriented
plane through three of the other points, and precisely a of the remaining points lie above Π. By first
choosing P and then Π, we find that

|Sa,b|= (n+1) f (a,b) = 2(n+1)(a+1)(b+1),

where the second equality is by the induction hypothesis. By first choosing Π and then P, we find
that

|Sa,b|= (a+1) f (a+1,b)+(b+1) f (a,b+1).

Equating these two expressions for |Sa,b|, we have

(a+1) f (a+1,b)+(b+1) f (a,b+1) = 2(a+b+4)(a+1)(b+1), (1)

for any a,b≥ 0 such that a+b+3 = n. But if we have f (a+1,b) = 2(a+2)(b+1), then (1) gives

(b+1) f (a,b+1) = 2(a+b+4)(a+1)(b+1)− (a+1) f (a+1,b)

= 2(a+b+4)(a+1)(b+1)−2(a+1)(a+2)(b+1)

= 2(a+1)(b+1)
(
(a+b+4)− (b+2)

)
= 2(a+1)(b+1)(b+2),

and thus f (a,b+1) = 2(a+1)(b+2). Thus, for any a,b≥ 0 with a+b+3 = n,

f (a+1,b) satisfies (∗) =⇒ f (a,b+1) satisfies (∗).

Starting with the base case f (n−2,0)= n−1 (proven above) and applying another layer of induction,
we see that the values f (n−2,0), f (n−3,1), f (n−4,2), . . . , f (0,n−2) all satisfy (∗). This proves
the induction hypothesis (i.e. that (∗) holds for any n+1 points) and thus concludes the proof.


