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The problems from BAMO-8 are A–E, and the problems from BAMO-12 are 1–5.

Problems
A A school needs to elect its president. The school has 121 students, each of whom belongs to one of

two tribes: Geometers or Algebraists. Two candidates are running for president: one Geometer and
one Algebraist. The Geometers vote only for Geometers and the Algebraists only for Algebraists.
There are more Algebraists than Geometers, but the Geometers are resourceful. They convince the
school that the following two-step procedure is fairer:

(a) The school is divided into 11 groups, with 11 students in each group. Each group elects a
representative for step 2.

(b) The 11 elected representatives elect a president.

Not only do the Geometers manage to have this two-step procedure approved, they also volunteer to
assign the students to groups for step 1. What is the minimum number of Geometers in the school
that guarantees they can elect a Geometer as president? (In any stage of voting, the majority wins.)

B Amelia’s mother proposes a game. “Pick two of the shapes below,” she says to Amelia. (The shapes
are an equilateral triangle, a parallelogram, an isosceles trapezoid, a kite, and an ellipse. These shapes
are drawn to scale.) Amelia’s mother continues: “I will draw those two shapes on a sheet of paper,
in whatever position and orientation I choose, without overlapping them. Then you draw a straight
line that cuts both shapes, so that each shape is divided into two congruent halves.”

Which two of the shapes should Amelia choose to guarantee that she can succeed? Given that choice
of shapes, explain how Amelia can draw her line, what property of those shapes makes it possible
for her to do so, and why this would not work with any other pair of these shapes.

C/1 Sugar Station sells 44 different kinds of candies, packaged one to a box. Each box is priced at a
positive integer number of cents, and it costs $1.51 to buy one of every kind. (There is no discount
based on the number of candies in a purchase.) Unfortunately, Anna only has $0.75.

(a) Show that Anna can buy at least 22 boxes, each containing a different candy.

(b) Show that Anna can do even better, buying at least 25 boxes, each containing a different candy.



D/2 Sasha wants to bake 6 cookies in his 8 inch × 8 inch square baking sheet. With a cookie cutter, he
cuts out from the dough six circular shapes, each exactly 3 inches in diameter. Can he place these
six dough shapes on the baking sheet without the shapes touching each other? If yes, show us how.
If no, explain why not. (Assume that the dough does not expand during baking.)

E/3 Let Sn be the sum of the first n prime numbers. For example,

S5 = 2+3+5+7+11 = 28.

Does there exist an integer k such that S2023 < k2 < S2024?

4 Find all polynomials f that satisfy the equation

f (3x)
f (x)

=
729(x−3)

x−243

for infinitely many real values of x.

5 An underground burrow consists of an infinite sequence of rooms labeled by the integers
(. . . ,−3,−2,−1,0,1,2,3, . . .). Initially, some of the rooms are occupied by one or more rabbits.

Each rabbit wants to be alone. Thus, if there are two or more rabbits in the same room (say, room
m), half the rabbits (rounding down) will flee to room m−1, and half (also rounding down) to room
m+1. Once per minute, this happens simultaneously in all rooms that have two or more rabbits. For
example, if initially all rooms are empty except for 5 rabbits in room #12 and 2 rabbits in room #13,
then after one minute, rooms #11– #14 will contain 2, 2, 2, and 1 rabbits, respectively, and all other
rooms will be empty.

Now suppose that initially there are k+1 rabbits in room k for each k = 0,1,2, . . . ,9,10, and all other
rooms are empty.

(a) Show that eventually the rabbits will stop moving.

(b) Determine which rooms will be occupied when this occurs.

Solutions

A Solution: To ultimately win the election in step 2, the Geometers must have 6 seats among the 11
representatives who elect the president.

Moving back to step 1, the Geometers need 6 out of 11 votes in a group to elect a representative
from that group. Thus, it takes 6×6 = 36 Geometers to elect 6 representatives and thereby win the
presidency.

B Solution: Amelia should choose the parallelogram and the ellipse, which are then simultaneously
bisected into congruent halves by the line through their centers. This works because these two shapes
have half-turn rotational symmetry.

Each of the other three shapes has only a finite number of lines cutting it into two congruent parts.
The equilateral triangle has three such lines—the three axes of symmetry. The trapezoid and the kite
have just one axis of symmetry each. If Amelia chooses one of these three shapes, her mother can
always position it in such a way that its axis or axes of symmetry do not coincide with any axis of
symmetry of the other figure. Indeed, if we call the intersection of the diagonals of the trapezoid
(respectively, the kite) the center of that figure, then one easy way for Amelia’s mom to construct an
impossible configuration is to make sure that the axes of symmetry of one shape do not pass through
the center of the other shape.



C/1 Solution: For part (a), pick boxes containing 22 different candies chosen at random. Let their total
cost be m cents. If m ≤ 75, Anna can buy these candies. Otherwise, m ≥ 76. In this case, the other
22 candies have a total cost of 151−m≤ 75 cents, so Anna can buy those candies instead.

For part (b), rank the candies from most to least expensive and consider the 19th candy in the ranking.
If this candy costs 4 cents or more, then the first 19 candies cost at least 76 cents and so the last
25 candies cost at most 75 cents. But if the 19th most expensive candy costs 3 cents or less, then so
do the remaining 25 candies in the list, so the last 25 candies again cost at most 75 cents.

D/2 Solution: Yes, but just barely! The centers of the cookies must lie within the middle 5×5 square.
Divide this square in half one way and in thirds the other way, creating a grid of six 5

2×
5
3 rectangles,

and place cookie centers at alternate intersections of this grid as shown.

58

8

5

Then the distance between nearest neighboring cookie centers is√(
5
2

)2

+

(
5
3

)2

=

√
325
6

> 3,

so the cookies do not touch or overlap.

E/3 Solution: Claim: There exists an integer k such that S2023 < k2 < S2024.

Proof: Let k be the smallest integer such that S2023 < k2. Note that

k2 = 1+3+5+ · · ·+Ok,

where Ok = 2k− 1, the kth odd number. Furthermore, observe that Ok ≤ p2023, the 2023rd prime.
This follows from the fact that S2023 = 2+3+5+7+11+ · · ·+ p2023 is a sum of 2023 primes, and
if we compare this with the sum of all the odd integers up to p2023, this second sum is surely larger,
since only the first term is smaller (1 versus 2), and otherwise it contains every number in the first
sum, plus many more odd numbers (since there are gaps in the primes). Note that this is a very crude
estimate!

By the minimality of k, we know that

(k−1)2 = 1+3+5+ · · ·+(Ok−2)≤ S2023.



Adding Ok to both sides yields

1+3+5+ · · ·+(Ok−2)+Ok = k2

≤ S2023 +Ok

≤ S2023 + p2023

< S2023 + p2024

= S2024,

and we are done.

Alternative version: We argue by contradiction. Suppose there is no perfect square between S2023
and S2024. Then there is some positive integer r such that

r2 ≤ S2023 < S2024 ≤ (r+1)2.

Consequently, S2024− S2023 (which is the 2024th prime) is at most (r+ 1)2− r2 = 2r+ 1, and S2023
is at most the sum of all primes no larger than 2r. This sum is made up of 2 and some, but not all, of
the odd numbers up to 2r (in particular, 1 and 9 are missing). Thus,

S2023 ≤ (1+3+5+7+9+ · · ·+(2r−1))− (1+9)+2

= r2−8,

which contradicts the premise that r2 ≤ S2023. Therefore, there must be a perfect square between
S2023 and S2024.

4 Solution: The above equation holds for infinitely many x if and only if

(x−243) f (3x) = 729(x−3) f (x)

for all x ∈ C, because (x− 243) f (3x)− 729(x− 3) f (x) is a polynomial, which has infinitely many
zeroes if and only if it is identically 0.

We now plug in different values to find various zeroes of f :

x = 3 =⇒ f (9) = 0

x = 9 =⇒ f (27) = 0

x = 27 =⇒ f (81) = 0

x = 81 =⇒ f (243) = 0

We may write f (x) = (x− 243)(x− 81)(x− 27)(x− 9)p(x) for some polynomial p(x). We want to
solve

(x−243)(3x−243)(3x−81)(3x−27)(3x−9)p(3x)

= 729(x−3)(x−243)(x−81)(x−27)(x−9)p(x).

Dividing out common factors from both sides, we get p(3x) = 9p(x), so the polynomial p is homo-
geneous of degree 2. Therefore p(x) = ax2 and thus f (x) = a(x− 243)(x− 81)(x− 27)(x− 9)x2,
where a ∈ C is arbitrary. �

Alternative solution. As above, we wish to find polynomials f such that

(x−243) f (3x) = 729(x−3) f (x).

Suppose f is such a polynomial and let Z be its multiset of zeroes.



Both (x−243) f (3x) and 729(x−3) f (x) have the same multiset of zeroes, i.e. {243}∪ 1
3 Z = {3}∪Z

or {729}∪Z = {9}∪3Z. Thus

9 ∈ Z⇒ 27 ∈ 3Z
⇒ 27 ∈ Z
⇒ 81 ∈ 3Z
⇒ 81 ∈ Z
⇒ 243 ∈ 3Z
⇒ 243 ∈ Z.

Let Y be the unique multiset with Z = {9,27,81,243}∪Y . This gives

{9,27,81,243,729}∪Y = {9,27,81,243,729}∪3Y,

so Y ⊂ C is a finite multiset, invariant under multiplication by 3. It follows that Y = {0,0, . . . ,0}
with some multiplicity k. Hence

f (x) = axk(x−9)(x−27)(x−81)(x−243)

for some constant a ∈ C. Plugging this back into the original equation, we see that k = 2 and that
a ∈ C can be arbitrary. �

5 Solution: First, we show that the process eventually stops.

Call a room interior if it is occupied, or if at least one room somewhere to its left and at least one
room somewhere to its right are occupied.

We claim that it is not possible for a gap of two or more consecutive unoccupied interior rooms to
ever appear, given that no such gap exists in the initial configuration. For consider the first moment
when such a gap appears, and let A and B be the two leftmost rooms in that gap. Either A or B must
have been occupied at the previous step. But when rabbits leave A, some of them must go to B, and
vice versa, creating a contradiction. This proves the claim.

Rabbits move in pairs, from room k to rooms k−1 and k+1. Since k+k = (k−1)+(k+1), the sum
of the rabbits’ room numbers is constant. However, the sum of their room numbers’ squares increases
at every step, since (k−1)2 +(k+1)2 = k2 + k2 +2. This shows that the rabbits’ configuration can
never recur, neither exactly nor up to a shift.

Up to a shift, there are finitely many possible configurations of rabbits with no internal gaps of two
or more rooms. Thus we have shown that the process terminates after a finite number of steps.

Now we will determine the final configuration.

We claim that the final configuration cannot have two empty interior rooms (consecutive or other-
wise!). In particular, we will prove by strong induction on n that at no time do n consecutive interior
rooms contain n−2 or fewer rabbits.

Base case (n= 0): In this case, the claim is that 2 consecutive interior rooms cannot contain 0 rabbits.
We already proved this above.

Inductive step: Suppose the proposition has been proven up to some fixed n (inclusive). We wish
to show that n + 1 consecutive interior rooms cannot ever contain n− 1 or fewer rabbits. Aim-
ing for a contradiction, suppose that, at some time, some n+ 1 consecutive interior rooms do con-
tain n− 1 or fewer rabbits. We claim those rooms must contain 0,1,1, . . . ,1︸ ︷︷ ︸

n−1

,0 rabbits respectively.

Proof: Any other possible distribution among those rooms would include at least three empty rooms
0, . . . . . .︸ ︷︷ ︸

r rooms

,0, . . . . . .︸ ︷︷ ︸
n−r−2
rooms

,0. By the inductive hypothesis, there must be at least r+1 rabbits in the first r+2



rooms and at least n− 1− r rabbits in the last n− r rooms. But that makes n rabbits, which is a
contradiction. The claim is proved; let us proceed.

Let the two rooms on the ends of the 0,1,1, . . . ,1︸ ︷︷ ︸
n−1

,0 sequence be room k and room k + n. These

rooms must have been occupied at some point (since they are interior). Without loss of generality,
suppose room k contained a rabbit at least as recently as room k+ n, and consider the last moment
when room k was occupied. At the next moment, a rabbit must have fled from room k to room k+1.
After that time, the total number of rabbits in rooms k, . . . ,k+n cannot have changed. Thus, the state
0,1,1, . . . ,1︸ ︷︷ ︸

n−1

,0 was attained at that moment.

If at that moment rooms k and k + n discharged simultaneously, then before they did so, rooms
k+1,k+2, . . . ,k+n−1 must have contained at most n−3 rabbits. If room k+n was already empty
when room k discharged for the last time, then rooms k+ 1,k+ 2, . . . ,k+ n must have contained at
most n−2 rabbits. Either way, the inductive hypothesis is violated, which completes our proof that
the final configuration does not have two empty interior rooms.

We have determined that the final configuration consists of a sequence of consecutive rooms of which
all, or all but one, are occupied by 1 rabbit each. There are 66 rabbits total. We also know that the
sum of the rabbits’ room numbers never changes from its initial value of (0)(1)+(1)(2)+(2)(3)+
· · ·+(10)(11) = 440.

To find a configuration meeting the requirements, we first consider whether the rabbits could be in 66
consecutive rooms. If so, their median room number would have to be 440

66 = 6 2
3 , but this is neither

an integer nor half an integer, so we can rule it out.

Thus the rabbits occupy some 67 consecutive rooms (except one), centered somewhere near room 7.
The 67 rooms centered at room 7 are rooms −26, . . . ,40, with a sum of 469. Thus, to achieve a sum
of 440, we can fill all these rooms except room 29. That’s a possible final configuration.

Finally, we verify that this answer is unique. If the 67 consecutive rooms are farther to the left, then
their sum is at most (−27)+(−26)+ · · ·+39 = 402, and omitting one room from this sum can’t get
us to 440. If they are further to the right, then their sum is at least (−25)+(−24)+ · · ·+41 = 536,
which is likewise too high. Thus, the configuration we computed must be the correct one.


